upsilon {xgrove} | R Documentation |
Explainability
Description
Compute explainability given predicted data of the model and an explainer.
Usage
upsilon(porig, pexp)
Arguments
porig |
An object of class |
pexp |
Name of the measure to be plotted on the x-axis, either |
Value
Numeric explainability upsilon.
Author(s)
References
-
Szepannek, G. and Luebke, K.(2023): How much do we see? On the explainability of partial dependence plots for credit risk scoring, Argumenta Oeconomica 50, DOI: 10.15611/aoe.2023.1.07.
Examples
library(randomForest)
library(pdp)
data(boston)
set.seed(42)
# Compute original model
rf <- randomForest(cmedv ~ ., data = boston)
data <- boston[,-3] # remove target variable
# Compute predictions
porig <- predict(rf, data)
# Compute surrogate grove
xg <- xgrove(rf, data)
pexp <- predict(xg$model, data, n.trees = 16)
upsilon(porig, pexp)
[Package xgrove version 0.1-7 Index]