| emgm {xLLiM} | R Documentation | 
Perform EM algorithm for fitting a Gaussian mixture model (GMM)
Description
Perform EM algorithm for fitting a Gaussian mixture model (GMM). In the GLLiM context, this is done jointly on both responses and covariates
Usage
emgm(X, init, maxiter,verb)
Arguments
| X | An  | 
| init | This argument can be a number  | 
| maxiter | Maximum number of iterations for estimation of the GMM | 
| verb | Print out the progression of the algorithm. If  | 
Value
Returns a list with the following elements:
| label | An  | 
| model | A list with the estimated parameters of the GMM | 
| model$mu | An  | 
| model$Sigma | An  | 
| model$weight | An  | 
| llh | A vector of values of the log-likelihood for each iteration of the algorithm | 
| R | An  | 
Author(s)
Emeline Perthame (emeline.perthame@inria.fr), Florence Forbes (florence.forbes@inria.fr), Antoine Deleforge (antoine.deleforge@inria.fr)
References
[1] A. Deleforge, F. Forbes, and R. Horaud. High-dimensional regression with Gaussian mixtures and partially-latent response variables. Statistics and Computing,25(5):893–911, 2015.
[2] E. Perthame, F. Forbes, and A. Deleforge. Inverse regression approach to robust nonlinear high-to-low dimensional mapping. Journal of Multivariate Analysis, 163(C):1–14, 2018. https://doi.org/10.1016/j.jmva.2017.09.009
[3] Y. Qiao and N. Minematsu. Mixture of probabilistic linear regressions: A unified view of GMM-based mapping techiques. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2009.
Converted to R from the Matlab code of the GLLiM toolbox available on: https://team.inria.fr/perception/gllim_toolbox/
See Also
Examples
# data(data.xllim)
# K=5
# r = emgm(data.xllim, init=K, verb=0);  
# r$R # estimation of posterior probabilities to belong to 
## each of the K components for each observation