x12 {x12} | R Documentation |
~~ Methods for Function x12
in Package x12 ~~
Description
~~ Methods for function x12
in package x12 ~~
Usage
x12(object,x12Parameter=new("x12Parameter"),x12BaseInfo=new("x12BaseInfo"),...)
Arguments
object |
object of class |
x12Parameter |
object of class |
x12BaseInfo |
object of class |
... |
at the moment only forceRun=FALSE |
Methods
signature(object = "ts")
signature(object = "x12Single")
signature(object = "x12Batch")
Value
- x12Output
An S4 object of class
x12Output-class
ifobject
is of classts
- x12Single
An S4 object of class
x12Single-class
ifobject
is of classx12Single-class
- x12Batch
An S4 object of class
x12Batch-class
ifobject
is of classx12Batch-class
Note
Parallelization is implemented for x12Batch objects with help of the package 'parallel'. To process in parallel set the option 'x12.parallel' to an integer value representing the number of cores to use ( options(x12.parallel=2) ). Afterwards all calls to the function 'x12' on an object of class 'x12Batch' will be parallelized (For reseting use options(x12.parallel=NULL) ).
cleanHistory is deprecated and cleanArchive should be used instead.
Author(s)
Alexander Kowarik, Angelika Meraner
Source
https://www.census.gov/data/software/x13as.html
References
Alexander Kowarik, Angelika Meraner, Matthias Templ, Daniel Schopfhauser (2014). Seasonal Adjustment with the R Packages x12 and x12GUI. Journal of Statistical Software, 62(2), 1-21. URL http://www.jstatsoft.org/v62/i02/.
See Also
summary
,
plot
,
x12env
,
setP
,
getP
,
loadP
,
saveP
,
prev
,
cleanArchive
,
crossVal
Examples
## Not run:
xts <- x12(AirPassengers)
summary(xts)
xs <- x12(new("x12Single",ts=AirPassengers))
summary(xs)
xb<-x12(new("x12Batch",list(AirPassengers,AirPassengers,AirPassengers)))
summary(xb)
#Create new batch object with 4 time series
xb <- new("x12Batch",list(AirPassengers,AirPassengers,AirPassengers,AirPassengers))
# change the automdl to FALSE in all 4 elements
xb <- setP(xb,list(automdl=FALSE))
#change the arima.model and arima.smodel setting for the first ts object
xb <- setP(xb,list(arima.model=c(1,1,0),arima.smodel=c(1,1,0)),1)
#change the arima.model and arima.smodel setting for the second ts object
xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(0,1,1)),2)
#change the arima.model and arima.smodel setting for the third ts object
xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(1,1,1)),3)
#change the arima.model and arima.smodel setting for the fourth ts object
xb <- setP(xb,list(arima.model=c(1,1,1),arima.smodel=c(1,1,1)),4)
#run x12 on all series
xb <- x12(xb)
summary(xb)
#Set automdl=TRUE for the first ts
xb <- setP(xb,list(automdl=TRUE),1)
#rerun x12 on all series (the binaries will only run on the first one)
xb <- x12(xb)
#summary with oldOutput
summary(xb,oldOutput=10)
#Change the parameter and output of the first series back to the first run
xb <- prev(xb,index=1,n=1)
#summary with oldOutput (--- No valid previous runs. ---)
summary(xb,oldOutput=10)
## End(Not run)