| w.qqplot {wtest} | R Documentation | 
W P-values Diagnosis by Q-Q Plot
Description
Draw a Q-Q plot for W-test
Usage
w.qqplot(data, y, w.order = c(1, 2), input.poolsize = 200,
  hf1 = "default.hf1", hf2 = "default.hf2", ...)
Arguments
| data | a data frame or matrix containing genotypes in the columns. Genotypes should be coded as (0, 1, 2) or (0, 1). | 
| y | a numeric vector of 0 or 1. | 
| w.order | a numeric number taking values 1 or 2.  | 
| input.poolsize | a numeric number; The maximum number of SNPs to calculate the Q-Q plot. Default is 200. The  | 
| hf1 | h and f values to calculate main effect, organized as a matrix, with columns (k, h, f), k = 2 to 3. Needed when  | 
| hf2 | h and f values to calculate interaction associations, organized as a matrix, with columns (k, h, f), k = 2 to 9. Needed when  | 
| ... | graphical parameters. | 
Details
With a given data and y, the p-value of W-test is calculated at given h and f values, which are plotted against the theoretical distribution.
Value
Q-Q plot
Examples
data(diabetes.geno)
data(phenotype1)
## Step 1. HF Calculation
# Please note that parameter B is recommended to be greater than 400.
hf1<-hf(data = diabetes.geno, w.order = 1, B = 200)
## Step 2. Q-Q Plot
w.qqplot(data = diabetes.geno, y = phenotype1, w.order = 1, hf1 = hf1, cex =.5)
abline(0,1)