sb {wsbackfit} | R Documentation |
Specify a nonparametric and/or a varying coefficient term in a wsbackfit formula
Description
Function used to indicate nonparametric terms and varying coefficient terms in a sback
formula.
Usage
sb(x1 = NULL, by = NULL, h = -1)
Arguments
x1 |
the univariate predictor |
by |
numeric predictor of the same dimension as |
h |
bandwidth (on the scale of the predictor) for this term. If |
Value
A list with the following components:
cov |
character vector with the name(s) of the involved predictor(s). |
h |
numeric value with the specified smoothing parameter. |
Author(s)
Javier Roca-Pardinas, Maria Xose Rodriguez-Alvarez and Stefan Sperlich
See Also
sback
, summary.sback
, plot.sback
Examples
library(wsbackfit)
set.seed(123)
###############################################
# Gaussian Simulated Sample
###############################################
set.seed(123)
# Define the data generating process
n <- 1000
x1 <- runif(n)*4-2
x2 <- runif(n)*4-2
x3 <- runif(n)*4-2
x4 <- runif(n)*4-2
x5 <- as.numeric(runif(n)>0.6)
f1 <- 2*sin(2*x1)
f2 <- x2^2
f3 <- 0
f4 <- x4
f5 <- 1.5*x5
mu <- f1 + f2 + f3 + f4 + f5
err <- (0.5 + 0.5*x5)*rnorm(n)
y <- mu + err
df <- data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = as.factor(x5), y = y)
# Fit the model with a fixed bandwidth for each covariate
m0 <- sback(formula = y ~ x5 + sb(x1, h = 0.1) + sb(x2, h = 0.1)
+ sb(x3, h = 0.1) + sb(x4, h = 0.1), kbin = 30, data = df)
summary(m0)
op <- par(no.readonly = TRUE)
par(mfrow = c(2,2))
plot(m0)
# Fit the model with the bandwidths selected by k-fold cross-validation.
m1 <- sback(formula = y ~ x5 + sb(x1, h = -1) + sb(x2, h = -1)
+ sb(x3, h = -1) + sb(x4, h = -1), kbin = 30, bw.grid = seq(0.01, 0.99, length = 30),
data = df)
summary(m1)
par(mfrow = c(2,2))
plot(m1)
par(op)
[Package wsbackfit version 1.0-5 Index]