clean_fit_lm {wrapr} | R Documentation |
Fit a stats::lm without carying back large structures.
Description
Please see https://win-vector.com/2014/05/30/trimming-the-fat-from-glm-models-in-r/ for discussion.
Usage
clean_fit_lm(
outcome,
variables,
data,
...,
intercept = TRUE,
weights = NULL,
env = baseenv()
)
Arguments
outcome |
character, name of outcome column. |
variables |
character, names of varaible columns. |
data |
data.frame, training data. |
... |
not used, force later arguments to be used by name |
intercept |
logical, if TRUE allow an intercept term. |
weights |
passed to stats::glm() |
env |
environment to work in. |
Value
list(model=model, summary=summary)
Examples
mk_data_example <- function(k) {
data.frame(
x1 = rep(c("a", "a", "b", "b"), k),
x2 = rep(c(0, 0, 0, 1), k),
y = rep(1:4, k),
yC = rep(c(FALSE, TRUE, TRUE, TRUE), k),
stringsAsFactors = FALSE)
}
res_lm <- clean_fit_lm("y", c("x1", "x2"),
mk_data_example(1))
length(serialize(res_lm$model, NULL))
res_lm <- clean_fit_lm("y", c("x1", "x2"),
mk_data_example(10000))
length(serialize(res_lm$model, NULL))
predict(res_lm$model,
newdata = mk_data_example(1))
[Package wrapr version 2.1.0 Index]