show_metseason {wqtrends} | R Documentation |
Plot period (seasonal) averages from fitted GAM
Description
Plot period (seasonal) averages from fitted GAM
Usage
show_metseason(
mod,
metfun = mean,
doystr = 1,
doyend = 364,
yrstr = 2000,
yrend = 2019,
yromit = NULL,
ylab,
width = 0.9,
size = 1.5,
nsim = 10000,
useave = FALSE,
base_size = 11,
xlim = NULL,
ylim = NULL,
...
)
Arguments
mod |
input model object as returned by |
metfun |
function input for metric to calculate, e.g., |
doystr |
numeric indicating start Julian day for extracting averages |
doyend |
numeric indicating ending Julian day for extracting averages |
yrstr |
numeric for starting year for trend model, see details |
yrend |
numeric for ending year for trend model, see details |
yromit |
optional numeric vector for years to omit from the plot, see details |
ylab |
chr string for y-axis label |
width |
numeric for width of error bars |
size |
numeric for point size |
nsim |
numeric indicating number of random draws for simulating uncertainty |
useave |
logical indicating if |
base_size |
numeric indicating base font size, passed to |
xlim |
optional numeric vector of length two for x-axis limits |
ylim |
optional numeric vector of length two for y-axis limits |
... |
additional arguments passed to |
Details
Setting yrstr
or yrend
to NULL
will suppress plotting of the trend line for the meta-analysis regression model.
The optional omityr
vector can be used to omit years from the plot and trend assessment. This may be preferred if seasonal estimates for a given year have very wide confidence intervals likely due to limited data, which can skew the trend assessments.
Set useave = T
to speed up calculations if metfun = mean
. This will use anlz_avgseason
to estimate the seasonal summary metrics using a non-stochastic equation.
Value
A ggplot
object
Examples
library(dplyr)
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl') %>%
filter(yr > 2015)
mod <- anlz_gam(tomod, trans = 'ident')
show_metseason(mod, doystr = 90, doyend = 180, yrstr = 2016, yrend = 2019,
ylab = 'Chlorophyll-a (ug/L)')
# show seasonal metrics without annual trend
show_metseason(mod, doystr = 90, doyend = 180, yrstr = NULL, yrend = NULL,
ylab = 'Chlorophyll-a (ug/L)')
# omit years from the analysis
show_metseason(mod, doystr = 90, doyend = 180, yrstr = 2015, yrend = 2019,
yromit = 2018, ylab = 'Chlorophyll-a (ug/L)')