workpatterns_classify_pav {wpa} | R Documentation |
Classify working pattern personas using a rule based algorithm, using the person-average volume-based ('pav') method.
Description
Apply a rule based algorithm to emails or instant messages sent by hour of day. This uses a person-average volume-based ('pav') method.
Usage
workpatterns_classify_pav(
data,
values = "percent",
signals = c("email", "IM"),
start_hour = "0900",
end_hour = "1700",
return = "plot"
)
Arguments
data |
A data frame containing data from the Hourly Collaboration query. |
values |
Character vector to specify whether to return percentages or absolute values in "data" and "plot". Valid values are:
|
signals |
Character vector to specify which collaboration metrics to use:
|
start_hour |
A character vector specifying starting hours, e.g. "0900" |
end_hour |
A character vector specifying starting hours, e.g. "1700" |
return |
Character vector to specify what to return. Valid options include:
|
Value
A different output is returned depending on the value passed to the return
argument:
-
"plot"
: returns a bar plot of signal distribution by hour and archetypes (default). A 'ggplot' object. -
"data"
: returns a data frame of the raw data with the classified archetypes. -
"table"
: returns a data frame of a summary table of the archetypes. -
"plot-area"
: returns an overlapping area plot. A 'ggplot' object.
Author(s)
Ainize Cidoncha ainize.cidoncha@microsoft.com
See Also
Other Working Patterns:
flex_index()
,
identify_shifts()
,
identify_shifts_wp()
,
plot_flex_index()
,
workpatterns_area()
,
workpatterns_classify()
,
workpatterns_classify_bw()
,
workpatterns_hclust()
,
workpatterns_rank()
,
workpatterns_report()