personas_hclust {wpa} | R Documentation |
Create hierarchical clusters of selected metrics using a Person query
Description
Apply hierarchical clustering to selected metrics. Person averages are computed prior to clustering. The hierarchical clustering uses cosine distance and the ward.D method of agglomeration.
Usage
personas_hclust(data, metrics, k = 4, return = "plot")
Arguments
data |
A data frame containing |
metrics |
Character vector containing names of metrics to use for clustering. See examples section. |
k |
Numeric vector to specify the |
return |
String specifying what to return. This must be one of the following strings:
See |
Value
A different output is returned depending on the value passed to the return
argument:
-
"plot"
: 'ggplot' object. A heatmap plot comparing the key metric averages of the clusters as perkeymetrics_scan()
. -
"data"
: data frame. Raw data with clusters appended -
"table"
: data frame. Summary table for identified clusters -
"hclust"
: 'hclust' object. hierarchical model generated by the function.
Author(s)
Ainize Cidoncha ainize.cidoncha@microsoft.com
See Also
Other Clustering:
workpatterns_classify()
,
workpatterns_hclust()
Examples
# Return plot
personas_hclust(sq_data,
metrics = c("Collaboration_hours", "Workweek_span"),
k = 4)
# Return summary table
personas_hclust(sq_data,
metrics = c("Collaboration_hours", "Workweek_span"),
k = 4,
return = "table")
# Return data with clusters appended
personas_hclust(sq_data,
metrics = c("Collaboration_hours", "Workweek_span"),
k = 4,
return = "data")