period_change {wpa} | R Documentation |
Plot the distribution of percentage change between periods of a Viva Insights metric by the number of employees.
Description
This function also presents the p-value for the null hypothesis that the variable has not changed, using a Wilcox signed-rank test.
Usage
period_change(
data,
compvar,
before_start = min(as.Date(data$Date, "%m/%d/%Y")),
before_end,
after_start = as.Date(before_end) + 1,
after_end = max(as.Date(data$Date, "%m/%d/%Y")),
return = "count"
)
Arguments
data |
Person Query as a dataframe including date column named |
compvar |
comparison variable to compare person change before and
after For example, |
before_start |
Start date of "before" time period in |
before_end |
End date of "before" time period in |
after_start |
Start date of "after" time period in |
after_end |
End date of "after" time period in |
return |
Character vector specifying whether to return plot as Count or Percentage of Employees. Valid inputs include:
|
Value
ggplot object showing a bar plot (histogram) of change for two time intervals.
Author(s)
Mark Powers mark.powers@microsoft.com
See Also
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Time-series:
IV_by_period()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_trend()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
Other Flexible Input:
create_ITSA()
Examples
# Run plot
period_change(sq_data, compvar = "Workweek_span", before_end = "2019-12-29")
# Run plot with more specific arguments
period_change(sq_data,
compvar = "Workweek_span",
before_start = "2019-12-15",
before_end = "2019-12-29",
after_start = "2020-01-05",
after_end = "2020-01-26",
return = "percentage")