| identify_tenure {wpa} | R Documentation |
Tenure calculation based on different input dates, returns data summary table or histogram
Description
This function calculates employee tenure based on different input dates.
identify_tenure uses the latest Date available if user selects "Date",
but also have flexibility to select a specific date, e.g. "1/1/2020".
Usage
identify_tenure(
data,
end_date = "Date",
beg_date = "HireDate",
maxten = 40,
return = "message"
)
Arguments
data |
A Standard Person Query dataset in the form of a data frame. |
end_date |
A string specifying the name of the date variable representing the latest date. Defaults to "Date". |
beg_date |
A string specifying the name of the date variable representing the hire date. Defaults to "HireDate". |
maxten |
A numeric value representing the maximum tenure. If the tenure exceeds this threshold, it would be accounted for in the flag message. |
return |
String specifying what to return. This must be one of the following strings:
See |
Value
A different output is returned depending on the value passed to the return
argument:
-
"message": message on console with a diagnostic message. -
"text": string containing a diagnostic message. -
"plot": 'ggplot' object. A line plot showing tenure. -
"data_cleaned": data frame filtered only by rows with tenure values lying within the threshold. -
"data_dirty": data frame filtered only by rows with tenure values lying outside the threshold. -
"data": data frame with thePersonIdand a calculated variable calledTenureYearis returned.
See Also
Other Data Validation:
check_query(),
extract_hr(),
flag_ch_ratio(),
flag_em_ratio(),
flag_extreme(),
flag_outlooktime(),
hr_trend(),
hrvar_count(),
hrvar_count_all(),
hrvar_trend(),
identify_churn(),
identify_holidayweeks(),
identify_inactiveweeks(),
identify_nkw(),
identify_outlier(),
identify_privacythreshold(),
identify_query(),
identify_shifts(),
identify_shifts_wp(),
remove_outliers(),
standardise_pq(),
subject_validate(),
subject_validate_report(),
track_HR_change(),
validation_report()
Examples
library(dplyr)
# Add HireDate to sq_data
sq_data2 <-
sq_data %>%
mutate(HireDate = as.Date("1/1/2015", format = "%m/%d/%Y"))
identify_tenure(sq_data2)