identify_shifts {wpa} | R Documentation |
Identify shifts based on outlook time settings for work day start and end time
Description
This function uses outlook calendar settings for start and end time of work
day to identify work shifts. The relevant variables are
WorkingStartTimeSetInOutlook
and WorkingEndTimeSetInOutlook
.
Usage
identify_shifts(data, return = "plot")
Arguments
data |
A data frame containing data from the Hourly Collaboration query. |
return |
String specifying what to return. This must be one of the following strings:
See |
Value
A different output is returned depending on the value passed to the return
argument:
-
"plot"
: ggplot object. A bar plot for the weekly count of shifts. -
"table"
: data frame. A summary table for the count of shifts. -
"data
: data frame. Input data appended with theShifts
columns.
See Also
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
Other Working Patterns:
flex_index()
,
identify_shifts_wp()
,
plot_flex_index()
,
workpatterns_area()
,
workpatterns_classify()
,
workpatterns_classify_bw()
,
workpatterns_classify_pav()
,
workpatterns_hclust()
,
workpatterns_rank()
,
workpatterns_report()
Examples
# Return plot
dv_data %>% identify_shifts()
# Return summary table
dv_data %>% identify_shifts(return = "table")