identify_outlier {wpa} | R Documentation |
Identify metric outliers over a date interval
Description
This function takes in a selected metric and uses
z-score (number of standard deviations) to identify outliers
across time. There are applications in this for identifying
weeks with abnormally low collaboration activity, e.g. holidays.
Time as a grouping variable can be overridden with the group_var
argument.
Usage
identify_outlier(data, group_var = "Date", metric = "Collaboration_hours")
Arguments
data |
A Standard Person Query dataset in the form of a data frame. |
group_var |
A string with the name of the grouping variable.
Defaults to |
metric |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
Value
Returns a data frame with Date
(if grouping variable is not set),
the metric, and the corresponding z-score.
See Also
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
Examples
identify_outlier(sq_data, metric = "Collaboration_hours")