| create_rank {wpa} | R Documentation |
Rank all groups across HR attributes on a selected Viva Insights metric
Description
This function scans a standard Person query output for groups with high levels of a given Viva Insights Metric. Returns a plot by default, with an option to return a table with all groups (across multiple HR attributes) ranked by the specified metric.
Usage
create_rank(
data,
metric,
hrvar = extract_hr(data, exclude_constants = TRUE),
mingroup = 5,
return = "table",
mode = "simple",
plot_mode = 1
)
Arguments
data |
A Standard Person Query dataset in the form of a data frame. |
metric |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
mode |
String to specify calculation mode. Must be either:
|
plot_mode |
Numeric vector to determine which plot mode to return. Must
be either
|
Value
A different output is returned depending on the value passed to the return
argument:
-
"plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output ifmodeis set to"combine". -
"table": data frame. A summary table for the metric.
Author(s)
Carlos Morales Torrado carlos.morales@microsoft.com
Martin Chan martin.chan@microsoft.com
See Also
Other Visualization:
afterhours_dist(),
afterhours_fizz(),
afterhours_line(),
afterhours_rank(),
afterhours_summary(),
afterhours_trend(),
collaboration_area(),
collaboration_dist(),
collaboration_fizz(),
collaboration_line(),
collaboration_rank(),
collaboration_sum(),
collaboration_trend(),
create_bar(),
create_bar_asis(),
create_boxplot(),
create_bubble(),
create_dist(),
create_fizz(),
create_inc(),
create_line(),
create_line_asis(),
create_period_scatter(),
create_sankey(),
create_scatter(),
create_stacked(),
create_tracking(),
create_trend(),
email_dist(),
email_fizz(),
email_line(),
email_rank(),
email_summary(),
email_trend(),
external_dist(),
external_fizz(),
external_line(),
external_network_plot(),
external_rank(),
external_sum(),
hr_trend(),
hrvar_count(),
hrvar_trend(),
internal_network_plot(),
keymetrics_scan(),
meeting_dist(),
meeting_fizz(),
meeting_line(),
meeting_quality(),
meeting_rank(),
meeting_summary(),
meeting_trend(),
meetingtype_dist(),
meetingtype_dist_ca(),
meetingtype_dist_mt(),
meetingtype_summary(),
mgrcoatt_dist(),
mgrrel_matrix(),
one2one_dist(),
one2one_fizz(),
one2one_freq(),
one2one_line(),
one2one_rank(),
one2one_sum(),
one2one_trend(),
period_change(),
workloads_dist(),
workloads_fizz(),
workloads_line(),
workloads_rank(),
workloads_summary(),
workloads_trend(),
workpatterns_area(),
workpatterns_rank()
Other Flexible:
create_bar(),
create_bar_asis(),
create_boxplot(),
create_bubble(),
create_density(),
create_dist(),
create_fizz(),
create_hist(),
create_inc(),
create_line(),
create_line_asis(),
create_period_scatter(),
create_sankey(),
create_scatter(),
create_stacked(),
create_tracking(),
create_trend(),
period_change()
Examples
sq_data_small <- dplyr::slice_sample(sq_data, prop = 0.1)
# Plot mode 1 - show top and bottom five groups
create_rank(
data = sq_data_small,
hrvar = c("FunctionType", "LevelDesignation"),
metric = "Emails_sent",
return = "plot",
plot_mode = 1
)
# Plot mode 2 - show top and bottom groups per HR variable
create_rank(
data = sq_data_small,
hrvar = c("FunctionType", "LevelDesignation"),
metric = "Emails_sent",
return = "plot",
plot_mode = 2
)
# Return a table
create_rank(
data = sq_data_small,
metric = "Emails_sent",
return = "table"
)
# Return a table - combination mode
create_rank(
data = sq_data_small,
metric = "Emails_sent",
mode = "combine",
return = "table"
)