create_dist {wpa} | R Documentation |
Horizontal 100 percent stacked bar plot for any metric
Description
Provides an analysis of the distribution of a selected metric. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
Usage
create_dist(
data,
metric,
hrvar = "Organization",
mingroup = 5,
return = "plot",
cut = c(15, 20, 25),
dist_colours = c("#facebc", "#fcf0eb", "#b4d5dd", "#bfe5ee"),
unit = "hours",
lbound = 0,
ubound = 100,
sort_by = NULL,
labels = NULL
)
Arguments
data |
A Standard Person Query dataset in the form of a data frame. |
metric |
String containing the name of the metric, e.g. "Collaboration_hours" |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
cut |
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20) |
dist_colours |
A character vector of length four to specify colour codes for the stacked bars. |
unit |
String to specify what unit to use. This defaults to |
lbound |
Numeric. Specifies the lower bound (inclusive) value for the minimum label. Defaults to 0. |
ubound |
Numeric. Specifies the upper bound (inclusive) value for the maximum label. Defaults to 100. |
sort_by |
String to specify the bucket label to sort by. Defaults to
|
labels |
Character vector to override labels for the created categorical variables. Must be a named vector - see examples. |
Value
A different output is returned depending on the value passed to the return
argument:
-
"plot"
: 'ggplot' object. A stacked bar plot for the metric. -
"table"
: data frame. A summary table for the metric.
See Also
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
Examples
# Return plot
create_dist(sq_data, metric = "Collaboration_hours", hrvar = "Organization")
# Return summary table
create_dist(sq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")
# Use custom labels by providing a label vector
eh_labels <- c(
"Fewer than fifteen" = "< 15 hours",
"Between fifteen and twenty" = "15 - 20 hours",
"Between twenty and twenty-five" = "20 - 25 hours",
"More than twenty-five" = "25+ hours"
)
sq_data %>%
create_dist(metric = "Email_hours",
labels = eh_labels, return = "plot")
# Sort by a category
sq_data %>%
create_dist(metric = "Collaboration_hours",
sort_by = "25+ hours")