IV_by_period {wpa} | R Documentation |
Identify the WPA metrics that have the biggest change between two periods.
Description
This function uses the Information Value algorithm to predict which Workplace Analytics metrics are most explained by the change in dates.
Usage
IV_by_period(
data,
before_start = min(as.Date(data$Date, "%m/%d/%Y")),
before_end,
after_start = as.Date(before_end) + 1,
after_end = max(as.Date(data$Date, "%m/%d/%Y")),
mybins = 10,
return = "table"
)
Arguments
data |
Person Query as a dataframe including date column named "Date"
This function assumes the data format is |
before_start |
Start date of "before" time period in |
before_end |
End date of "before" time period in |
after_start |
Start date of "after" time period in |
after_end |
End date of "after" time period in |
mybins |
Number of bins to cut the data into for Information Value analysis. Defaults to 10. |
return |
String specifying what to return. The current only valid
option is |
Value
data frame containing all the variables and the corresponding Information Value.
Author(s)
Mark Powers mark.powers@microsoft.com
See Also
Other Variable Association:
IV_report()
,
create_IV()
,
plot_WOE()
Other Information Value:
IV_report()
,
create_IV()
,
plot_WOE()
Other Time-series:
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_trend()
,
period_change()
Examples
# Returns a data frame
sq_data %>%
IV_by_period(
before_start = "2019-12-15",
before_end = "2019-12-29",
after_start = "2020-01-05",
after_end = "2020-01-26"
)