wowa.weightedOWAQuantifier {wowa} | R Documentation |
WOWA value computation Function
Description
Function for calculating the value of the quantifier-based WOWA function
Usage
wowa.weightedOWAQuantifier(x, p, w, n, spl)
Arguments
x |
The vector of inputs |
p |
The weights of inputs x |
w |
The OWA weightings vector |
n |
The dimension of the array x |
spl |
A structure that keeps the spline knots and coefficients computed in weightedOWAQuantifierBuild function |
Value
output |
The output is quantifier-based WOWA value |
Author(s)
Gleb Beliakov, Daniela L. Calderon, Deakin University
References
[1]G. Beliakov, H. Bustince, and T. Calvo. A Practical Guide to Averaging Functions. Springer, Berlin, Heidelberg, 2016.
[2]G. Beliakov. A method of introducing weights into OWA operators and other symmetric functions. In V. Kreinovich, editor, Uncertainty Modeling. Dedicated to B. Kovalerchuk, pages 37-52. Springer, Cham, 2017.
[3]G. Beliakov. Comparing apples and oranges: The weighted OWA function, Int.J. Intelligent Systems, 33, 1089-1108, 2018.
[4]V. Torra. The weighted OWA operator. Int. J. Intelligent Systems, 12:153-166, 1997.
[5]G. Beliakov and J.J. Dujmovic , Extension of bivariate means to weighted means of several arguments by using binary trees, Information sciences, 331, 137-147, 2016.
[6] J.J. Dujmovic and G. Beliakov. Idempotent weighted aggregation based on binary aggregation trees. Int. J. Intelligent Systems 32, 31-50, 2017.
Examples
n <- 4
pweights=c(0.3,0.25,0.3,0.15);
wweights=c(0.4,0.35,0.2,0.05);
tempspline <- wowa.weightedOWAQuantifierBuild(pweights,wweights , n)
wowa.weightedOWAQuantifier(c(0.3,0.4,0.8,0.2), pweights, wweights, n, tempspline)