wnl5 {wnl} | R Documentation |
Old type WinNonlin - Least Square not MLE
Description
It performs old type Winnonlin regression.
Usage
wnl5(Fx, Data, pNames, IE, LB, UB, Error="A", ObjFx=ObjLS)
Arguments
Fx |
Function for structural model. It should return a vector of the same length to observations. |
Data |
Data table which will be used in Fx. Fx should access this with |
pNames |
Parameter names in the order of Fx arguments |
IE |
Initial estimates of parameters |
LB |
Lower bound for |
UB |
Upper bound for |
Error |
Error model. One of |
ObjFx |
Objective function to be minimized. The default is least square function. |
Details
This uses scaled transformed parameters and environment e
internally. Here we do not provide standard error. If you want standard error, use nlr
.
Value
PE |
Point estimates |
WRSS |
Weighted Residual Sum of Square |
run$m |
Count of positive residuals |
run$n |
Count of negative residuals |
run$run |
Count of runs of residuals |
run$p.value |
P value of run test with excluding zero points |
Objective Function Value |
Minimum value of the objective function |
AIC |
Akaike Information Criterion |
SBC |
Schwarz Bayesian Information Criterion |
Condition Number |
Condition number |
Message |
Message from |
Prediction |
Fitted(predicted) values |
Residuals |
Residuals |
Elapsed Time |
Consumed time by minimization |
Author(s)
Kyun-Seop Bae <k@acr.kr>
Examples
tData = Theoph
colnames(tData) = c("ID", "BWT", "DOSE", "TIME", "DV")
fPK = function(THETA) # Prediction function
{
DOSE = 320000 # in microgram
TIME = e$DATA[,"TIME"] # use data in e$DATA
K = THETA[1]
Ka = THETA[2]
V = THETA[3]
Cp = DOSE/V*Ka/(Ka - K)*(exp(-K*TIME) - exp(-Ka*TIME))
return(Cp)
}
IDs = unique(tData[,"ID"])
nID = length(IDs)
for (i in 1:nID) {
Data = tData[tData$ID == IDs[i],]
Res = wnl5(fPK, Data, pNames=c("k", "ka", "V"), IE=c(0.1, 3, 500))
print(paste("## ID =", i, "##"))
print(Res)
}