wbt_svm_classification {whitebox} | R Documentation |
Svm classification
Description
Performs an SVM binary classification using training site polygons/points and multiple input images.
Usage
wbt_svm_classification(
inputs,
training,
field,
scaling = "Normalize",
output = NULL,
c = 200,
gamma = 50,
tolerance = 0.1,
test_proportion = 0.2,
wd = NULL,
verbose_mode = NULL,
compress_rasters = NULL,
command_only = FALSE
)
Arguments
inputs |
Names of the input predictor rasters. |
training |
Name of the input training site polygons/points Shapefile. |
field |
Name of the attribute containing class data. |
scaling |
Scaling method for predictors. Options include 'None', 'Normalize', and 'Standardize'. |
output |
Name of the output raster file. |
c |
c-value, the regularization parameter. |
gamma |
Gamma parameter used in setting the RBF (Gaussian) kernel function. |
tolerance |
The tolerance parameter used in determining the stopping condition. |
test_proportion |
The proportion of the dataset to include in the test split; default is 0.2. |
wd |
Changes the working directory. Default: |
verbose_mode |
Sets verbose mode. If verbose mode is |
compress_rasters |
Sets the flag used by 'WhiteboxTools' to determine whether to use compression for output rasters. Default: |
command_only |
Return command that would be executed by |
Value
Returns the tool text outputs.