detect_outliers {whippr} | R Documentation |
Detect outliers
Description
It detects outliers based on prediction bands for the given level of confidence provided.
Usage
detect_outliers(
.data,
test_type = c("incremental", "kinetics"),
vo2_column = "VO2",
cleaning_level = 0.95,
cleaning_baseline_fit,
protocol_n_transitions,
protocol_baseline_length,
protocol_transition_length,
method_incremental = c("linear", "anomaly"),
verbose = TRUE,
...
)
Arguments
.data |
Data retrieved from |
test_type |
The test to be analyzed. Either 'incremental' or 'kinetics'. |
vo2_column |
The name (quoted) of the column containing the absolute oxygen uptake (VO2) data. Default to |
cleaning_level |
A numeric scalar between 0 and 1 giving the confidence level for the intervals to be calculated. Default to |
cleaning_baseline_fit |
For kinetics test only. A vector of the same length as the number in |
protocol_n_transitions |
For kinetics test only. Number of transitions performed. |
protocol_baseline_length |
For kinetics test only. The length of the baseline (in seconds). |
protocol_transition_length |
For kinetics test only. The length of the transition (in seconds). |
method_incremental |
The method to be used in detecting outliers from the
incremental test. Either 'linear' or 'anomaly'. See |
verbose |
A boolean indicating whether messages should be printed in the console. Default to |
... |
Additional arguments. Currently ignored. |
Details
TODO
Value
a tibble
Examples
## Not run:
## get file path from example data
path_example <- system.file("example_cosmed.xlsx", package = "whippr")
## read data
df <- read_data(path = path_example, metabolic_cart = "cosmed")
## detect outliers
data_outliers <- detect_outliers(
.data = df,
test_type = "kinetics",
vo2_column = "VO2",
cleaning_level = 0.95,
cleaning_baseline_fit = c("linear", "exponential", "exponential"),
protocol_n_transitions = 3,
protocol_baseline_length = 360,
protocol_transition_length = 360,
verbose = TRUE
)
## get file path from example data
path_example_ramp <- system.file("ramp_cosmed.xlsx", package = "whippr")
## read data from ramp test
df_ramp <- read_data(path = path_example_ramp, metabolic_cart = "cosmed")
## normalize incremental test data
ramp_normalized <- df_ramp %>%
incremental_normalize(
.data = .,
incremental_type = "ramp",
has_baseline = TRUE,
baseline_length = 240,
work_rate_magic = TRUE,
baseline_intensity = 20,
ramp_increase = 25
)
## detect ramp outliers
data_ramp_outliers <- detect_outliers(
.data = ramp_normalized,
test_type = "incremental",
vo2_column = "VO2",
cleaning_level = 0.95,
method_incremental = "linear",
verbose = TRUE
)
## End(Not run)