wtsc.wrapper {weightedScores} | R Documentation |
THE WEIGHTED SCORES METHOD WITH INPUTS OF THE DATA
Description
The weighted scores method with inputs of the data.
Usage
wtsc.wrapper(xdat,ydat,id,tvec,margmodel,corstr,link,iprint=FALSE)
wtsc.ord.wrapper(xdat,ydat,id,tvec,corstr,link,iprint=FALSE)
Arguments
xdat |
|
ydat |
|
id |
An index for individuals or clusters. |
tvec |
A vector with the time indicator of individuals or clusters. |
margmodel |
Indicates the marginal model. Choices are “poisson” for Poisson, “bernoulli” for Bernoulli, and “nb1” , “nb2” for the NB1 and NB2 parametrization of negative binomial in Cameron and Trivedi (1998). |
corstr |
Indicates the latent correlation structure of normal copula. Choices are “exch”, “ar”, and “unstr” for exchangeable, ar(1) and unstructured correlation structure, respectively. |
link |
The link function. Choices are “log” for the log link function, “logit” for the logit link function, and “probit” for the probit link function. |
iprint |
Indicates printing of some intermediate results, default FALSE |
Details
This wrapper functions handles all the steps to obtain the weighted scores estimates and standard errors.
Value
A list containing the following components:
IEEest |
The estimates of the regression and not regression parameters ignoring dependence. |
CL1est |
The vector with the CL1 estimated dependence parameters (latent correlations). |
CL1lik |
The value of the sum of bivariate marginal log-likelihoods at CL1 estimates. |
WSest |
The weighted score estimates of the regression and not regression parameters. |
asympcov |
The estimated weighted scores asymptotic covariance matrix. |
Author(s)
Aristidis K. Nikoloulopoulos A.Nikoloulopoulos@uea.ac.uk
Harry Joe harry.joe@ubc.ca
References
Nikoloulopoulos, A.K., Joe, H. and Chaganty, N.R. (2011) Weighted scores method for regression models with dependent data. Biostatistics, 12, 653–665. doi: 10.1093/biostatistics/kxr005.
Nikoloulopoulos, A.K. (2016) Correlation structure and variable selection in generalized estimating equations via composite likelihood information criteria. Statistics in Medicine, 35, 2377–2390. doi: 10.1002/sim.6871.
Nikoloulopoulos, A.K. (2017) Weighted scores method for longitudinal ordinal data. Arxiv e-prints, <arXiv:1510.07376>. https://arxiv.org/abs/1510.07376.
See Also
Examples
################################################################################
# read and set up the data set
################################################################################
data(childvisit)
# covariates
season1<-childvisit$q
season1[season1>1]<-0
xdat<-cbind(1,childvisit$sex,childvisit$age,childvisit$m,season1)
# response
ydat<-childvisit$hosp
#id
id<-childvisit$id
#time
tvec<-childvisit$q
################################################################################
out<-wtsc.wrapper(xdat,ydat,id,tvec,margmodel="nb1",corstr="ar",iprint=TRUE)
################################################################################
# transform to binary responses #
################################################################################
y2<-ydat
y2[ydat>0]<-1
################################################################################
out<-wtsc.wrapper(xdat,y2,id,tvec,margmodel="bernoulli",link="probit",
corstr="exch",iprint=TRUE)
################################################################################
# via the code for ordinal #
################################################################################
out<-wtsc.ord.wrapper(xdat[,-1],2-y2,id,tvec,link="probit",
corstr="exch",iprint=TRUE)