margmodel {weightedScores} | R Documentation |
DENSITY AND CDF OF THE UNIVARIATE MARGINAL DISTRIBUTION
Description
Density and cdf of the univariate marginal distribution.
Usage
dmargmodel(y,mu,gam,invgam,margmodel)
pmargmodel(y,mu,gam,invgam,margmodel)
dmargmodel.ord(y,mu,gam,link)
pmargmodel.ord(y,mu,gam,link)
Arguments
y |
Vector of (non-negative integer) quantiles. |
mu |
The parameter |
gam |
The parameter(s) |
invgam |
The inverse of parameter |
margmodel |
Indicates the marginal model. Choices are “poisson” for Poisson, “bernoulli” for Bernoulli, and “nb1” , “nb2” for the NB1 and NB2 parametrization of negative binomial in Cameron and Trivedi (1998). See details. |
link |
The link function. Choices are “logit” for the logit link function, and “probit” for the probit link function. |
Details
Negative binomial distribution
NB(\tau,\xi)
allows for overdispersion
and its probability mass function (pmf) is given by
f(y;\tau,\xi)=\frac{\Gamma(\tau+y)}{\Gamma(\tau)\; y!}
\frac{\xi^y}{(1+\xi)^{\tau + y}},\quad \begin{matrix} y=0,1,2,\ldots, \\
\tau>0,\; \xi>0,\end{matrix}
with mean \mu=\tau\,\xi=\exp(\beta^T x)
and variance \tau\,\xi\,(1+\xi)
.
Cameron and Trivedi (1998) present the NBk parametrization where
\tau=\mu^{2-k}\gamma^{-1}
and \xi=\mu^{k-1}\gamma
, 1\le k\le 2
.
In this function we use the NB1 parametrization
(\tau=\mu\gamma^{-1},\; \xi=\gamma)
, and the NB2 parametrization
(\tau=\gamma^{-1},\; \xi=\mu\gamma)
; the latter
is the same as in Lawless (1987).
margmodel.ord
is a variant of the code for ordinal (probit and logistic) model. In this case, the response Y
is assumed to have density
f_1(y;\nu,\gamma)=F(\alpha_{y}+\nu)-F(\alpha_{y-1}+\nu),
where \nu=x\beta
is a function of x
and the p
-dimensional regression vector \beta
, and \gamma=(\alpha_1,\ldots,\alpha_{K-1})
is the $q$-dimensional vector of the univariate cutpoints (q=K-1
). Note that F
normal leads to the probit model and F
logistic
leads to the cumulative logit model for ordinal response.
Value
The density and cdf of the univariate distribution.
Author(s)
Aristidis K. Nikoloulopoulos A.Nikoloulopoulos@uea.ac.uk
Harry Joe harry.joe@ubc.ca
References
Cameron, A. C. and Trivedi, P. K. (1998) Regression Analysis of Count Data. Cambridge: Cambridge University Press.
Lawless, J. F. (1987) Negative binomial and mixed Poisson regression. The Canadian Journal of Statistics, 15, 209–225.
Examples
y<-3
gam<-2.5
invgam<-1/2.5
mu<-0.5
margmodel<-"nb2"
dmargmodel(y,mu,gam,invgam,margmodel)
pmargmodel(y,mu,gam,invgam,margmodel)
link="probit"
dmargmodel.ord(y,mu,gam,link)
pmargmodel.ord(y,mu,gam,link)