iee {weightedScores} | R Documentation |
INDEPENDENT ESTIMATING EQUATIONS FOR BINARY AND COUNT REGRESSION
Description
Independent estimating equations for binary and count regression.
Usage
iee(xdat,ydat,margmodel,link)
Arguments
xdat |
|
ydat |
|
margmodel |
Indicates the marginal model. Choices are “poisson” for Poisson, “bernoulli” for Bernoulli, and “nb1” , “nb2” for the NB1 and NB2 parametrization of negative binomial in Cameron and Trivedi (1998). |
link |
The link function. Choices are “log” for the log link function, “logit” for the logit link function, and “probit” for the probit link function. |
Details
The univariate parameters are estimated from the sum of univariate marginal log-likelihoods.
Value
A list containing the following components:
coef |
The vector with the estimated regression parameters. |
gam |
The vector with the estimated parameters that are not regression parameters. This is NULL for Poisson and binary regression. |
Author(s)
Aristidis K. Nikoloulopoulos A.Nikoloulopoulos@uea.ac.uk
Harry Joe harry.joe@ubc.ca
References
Cameron, A. C. and Trivedi, P. K. (1998) Regression Analysis of Count Data. Cambridge: Cambridge University Press.
See Also
Examples
################################################################################
# read and set up data set
################################################################################
data(toenail)
# covariates
xdat<-cbind(1,toenail$treat,toenail$time,toenail$treat*toenail$time)
# response
ydat<-toenail$y
#id
id<-toenail$id
#time
tvec<-toenail$time
################################################################################
# select the marginal model
################################################################################
margmodel="bernoulli"
################################################################################
# perform the IEE method
################################################################################
i.est<-iee(xdat,ydat,margmodel)
cat("\niest: IEE estimates\n")
print(c(i.est$reg,i.est$gam))