weightedRank-package {weightedRank}R Documentation

Sensitivity Analysis Using Weighted Rank Statistics

Description

Performs a sensitivity analysis using weighted rank tests in observational studies with I blocks of size J; see Rosenbaum (2024) <doi:10.1080/01621459.2023.2221402>. The package can perform adaptive inference in block designs; see Rosenbaum (2012) <doi:10.1093/biomet/ass032>. The main functions are wgtRank(), wgtRankCI() and wgtRanktt().

Details

The DESCRIPTION file:

Package: weightedRank
Type: Package
Title: Sensitivity Analysis Using Weighted Rank Statistics
Version: 0.3.7
Authors@R: person("Paul", "Rosenbaum", email = "rosenbaum@wharton.upenn.edu", role = c("aut", "cre"))
Description: Performs a sensitivity analysis using weighted rank tests in observational studies with I blocks of size J; see Rosenbaum (2024) <doi:10.1080/01621459.2023.2221402>. The package can perform adaptive inference in block designs; see Rosenbaum (2012) <doi:10.1093/biomet/ass032>. The main functions are wgtRank(), wgtRankCI() and wgtRanktt().
License: GPL-2
Encoding: UTF-8
LazyData: true
Imports: stats, graphics, mvtnorm, sensitivitymv, senstrat
Suggests: sensitivitymw, sensitivitymult, DOS2
Depends: R (>= 3.5.0)
Author: Paul Rosenbaum [aut, cre]
Maintainer: Paul Rosenbaum <rosenbaum@wharton.upenn.edu>

Index of help topics:

aBP                     Binge Drinking and Blood Pressure
aHDL                    Alcohol and HDL Cholesterol
aHDLe                   HDL Cholesterol and Light Daily Alcohol
                        2013-2020
amplify                 Amplification of sensitivity analysis in
                        observational studies.
dwgtRank                Weighted Rank Statistics for Evidence Factors
                        with Two Control Groups
ef2C                    Evidence Factors For Matched Triples With Two
                        Control Groups
gwgtRank                Generalized Sensitivity Analysis for Weighted
                        Rank Statistics in Block Designs
stepSolve               Root of a Monotone Decreasing Step Function
weightedRank-package    Sensitivity Analysis Using Weighted Rank
                        Statistics
wgtRank                 Sensitivity Analysis for Weighted Rank
                        Statistics in Block Designs
wgtRankC                Sensitivity Analysis for a Conditional Weighted
                        Rank Test
wgtRankCI               Sensitivity Analysis for Confidence Intervals
                        and Point Estimates from Weighted Rank
                        Statistics in Block Designs
wgtRanktt               Adaptive Inference Using Two Test Statistics in
                        a Block Design

The package conducts either fixed or adaptive sensitivity analyses for observational studies with I blocks and J individuals in each block, one treated and J-1 controls. The two main functions are wgtRank() for a fixed test statistic, and wgtRanktt() for an adaptive choice of one of two test statistics. The function wgtRankCI() inverts the test to obtain confidence intervals and Hodges-Lehmann point estimates. The function ef2C() is used to extract two evidence factors when a treated group is compared to two different control groups.

Author(s)

NA

Maintainer: NA

References

Berk, R. H. and Jones, D. H. (1978) <https://www.jstor.org/stable/4615706> Relatively optimal combinations of test statistics. Scandinavian Journal of Statistics, 5, 158-162.

Quade, D. (1979) <doi:10.2307/2286991> Using weighted rankings in the analysis of complete blocks with additive block effects. Journal of the American Statistical Association, 74, 680-683.

Rosenbaum, P. R. (1987). <doi:10.1214/ss/1177013232> The role of a second control group in an observational study. Statistical Science, 2, 292-306.

Rosenbaum, P. R. (2011) <doi:10.1111/j.1541-0420.2010.01535.x> A new Uā€Statistic with superior design sensitivity in matched observational studies. Biometrics, 67(3), 1017-1027.

Rosenbaum, P. R. (2012) <doi:10.1093/biomet/ass032> Testing one hypothesis twice in observational studies. Biometrika, 99(4), 763-774.

Rosenbaum, P. R. (2021) <doi:10.1201/9781003039648> Replication and Evidence Factors in Observational Studies. Chapman and Hall/CRC.

Rosenbaum, P. R. (2023) <doi:10.1111/biom.13921> A second evidence factor for a second control group. Biometrics, 79(4), 3968-3980.

Rosenbaum, P. R. (2024) <doi:10.1080/01621459.2023.2221402> Bahadur efficiency of observational block designs. Journal of the American Statistical Association.

Tardif, S. (1987) <doi:10.2307/2289476> Efficiency and optimality results for tests based on weighted rankings. Journal of the American Statistical Association, 82(398), 637-644.

Examples

data(aHDL)
y<-t(matrix(aHDL$hdl,4,406))
wgtRank(y,phi="u878",gamma=6) # New U-statistic weights (8,7,8)
wgtRanktt(y,phi1="u868",phi2="u878",gamma=5.9)

[Package weightedRank version 0.3.7 Index]