tau.fun {wbsts} | R Documentation |
Universal thresholds
Description
The function returns C^{(i)}
. C^{(i)}
tends to increase as we move to coarser scales due to
the increasing dependence in the wavelet periodogram sequences. Since the method applies to non-dyadic structures it is reasonable to propose a general rule that will apply in most cases. To accomplish this the C^{(i)}
are obtained for T=50,100,...,6000
. Then, for each scale i
the following regression is fitted
C^{(i)}=c_0^{(i)}+c_1^{(i)} T+ c_2^{(i)} \frac{1}{T} + c_3^{(i)} T^2 +\varepsilon.
The adjusted R^2
was above 90% for all the scales. Having estimated the values for \hat{c}_0^{(i)}, \hat{c}_1^{(i)}, \hat{c}_2^{(i)}, \hat{c}_3^{(i)}
the values can be retrieved for any sample size T
.
Usage
tau.fun(y)
Arguments
y |
A time series |
Value
Thresholds for every wavelet scale
Author(s)
K. Korkas and P. Fryzlewicz
References
P. Fryzlewicz (2014), Wild Binary Segmentation for multiple change-point detection. Annals of Statistics, 42, 2243-2281. (http://stats.lse.ac.uk/fryzlewicz/wbs/wbs.pdf)
K. Korkas and P. Fryzlewicz (2017), Multiple change-point detection for non-stationary time series using Wild Binary Segmentation. Statistica Sinica, 27, 287-311. (http://stats.lse.ac.uk/fryzlewicz/WBS_LSW/WBS_LSW.pdf)
Examples
##not run##
#cps=c(400,470)
#set.seed(101)
#y=sim.pw.ar(N =2000,sd_u = 1,b.slope=c(0.4,-0.6,0.5),br.loc=cps)[[2]]
#tau.fun(y) is the default value for C_i
##Binary segmentation
#wbs.lsw(y,M=1)$cp.aft
##Wild binary segmentation
#wbs.lsw(y,M=3500)$cp.aft