ww_local_moran_i {waywiser} | R Documentation |
Local Moran's I statistic
Description
Calculate the local Moran's I statistic for model residuals.
ww_local_moran_i()
returns the statistic itself, while
ww_local_moran_pvalue()
returns the associated p value.
These functions are meant to help assess model predictions, for instance by
identifying clusters of higher residuals than expected. For statistical
testing and inference applications, use spdep::localmoran_perm()
instead.
Usage
ww_local_moran_i(data, ...)
ww_local_moran_i_vec(truth, estimate, wt, na_rm = FALSE, ...)
ww_local_moran_pvalue(data, ...)
ww_local_moran_pvalue_vec(truth, estimate, wt = NULL, na_rm = FALSE, ...)
Arguments
data |
A |
... |
Additional arguments passed to |
truth |
The column identifier for the true results
(that is |
estimate |
The column identifier for the predicted
results (that is also |
wt |
A |
na_rm |
A |
Details
These functions can be used for geographic or projected coordinate reference systems and expect 2D data.
Value
A tibble with columns .metric, .estimator, and .estimate and nrow(data)
rows of values.
For _vec()
functions, a numeric vector of length(truth)
(or NA).
References
Anselin, L. 1995. Local indicators of spatial association, Geographical Analysis, 27, pp 93–115. doi: 10.1111/j.1538-4632.1995.tb00338.x.
Sokal, R. R, Oden, N. L. and Thomson, B. A. 1998. Local Spatial Autocorrelation in a Biological Model. Geographical Analysis, 30, pp 331–354. doi: 10.1111/j.1538-4632.1998.tb00406.x
See Also
Other autocorrelation metrics:
ww_global_geary_c()
,
ww_global_moran_i()
,
ww_local_geary_c()
,
ww_local_getis_ord_g()
Other yardstick metrics:
ww_agreement_coefficient()
,
ww_global_geary_c()
,
ww_global_moran_i()
,
ww_local_geary_c()
,
ww_local_getis_ord_g()
,
ww_willmott_d()
Examples
guerry_model <- guerry
guerry_lm <- lm(Crm_prs ~ Litercy, guerry_model)
guerry_model$predictions <- predict(guerry_lm, guerry_model)
ww_local_moran_i(guerry_model, Crm_prs, predictions)
ww_local_moran_pvalue(guerry_model, Crm_prs, predictions)
wt <- ww_build_weights(guerry_model)
ww_local_moran_i_vec(
guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt
)
ww_local_moran_pvalue_vec(
guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt
)