ww_global_geary_c {waywiser} | R Documentation |
Global Geary's C statistic
Description
Calculate the global Geary's C statistic for model residuals.
ww_global_geary_c()
returns the statistic itself, while
ww_global_geary_pvalue()
returns the associated p value.
These functions are meant to help assess model predictions, for instance by
identifying if there are clusters of higher residuals than expected. For
statistical testing and inference applications, use
spdep::geary.test()
instead.
Usage
ww_global_geary_c(data, ...)
ww_global_geary_c_vec(truth, estimate, wt, na_rm = FALSE, ...)
ww_global_geary_pvalue(data, ...)
ww_global_geary_pvalue_vec(truth, estimate, wt = NULL, na_rm = FALSE, ...)
Arguments
data |
A |
... |
Additional arguments passed to |
truth |
The column identifier for the true results
(that is |
estimate |
The column identifier for the predicted
results (that is also |
wt |
A |
na_rm |
A |
Details
These functions can be used for geographic or projected coordinate reference systems and expect 2D data.
Value
A tibble with columns .metric, .estimator, and .estimate and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the
number of groups.
For _vec()
functions, a single value (or NA).
References
Geary, R. C. (1954). "The Contiguity Ratio and Statistical Mapping". The Incorporated Statistician. 5 (3): 115–145. doi:10.2307/2986645.
Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, p. 17.
See Also
Other autocorrelation metrics:
ww_global_moran_i()
,
ww_local_geary_c()
,
ww_local_getis_ord_g()
,
ww_local_moran_i()
Other yardstick metrics:
ww_agreement_coefficient()
,
ww_global_moran_i()
,
ww_local_geary_c()
,
ww_local_getis_ord_g()
,
ww_local_moran_i()
,
ww_willmott_d()
Examples
guerry_model <- guerry
guerry_lm <- lm(Crm_prs ~ Litercy, guerry_model)
guerry_model$predictions <- predict(guerry_lm, guerry_model)
ww_global_geary_c(guerry_model, Crm_prs, predictions)
ww_global_geary_pvalue(guerry_model, Crm_prs, predictions)
wt <- ww_build_weights(guerry_model)
ww_global_geary_c_vec(
guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt
)
ww_global_geary_pvalue_vec(
guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt
)