wave.variance {waveslim} | R Documentation |
Wavelet Analysis of Univariate/Bivariate Time Series
Description
Produces an estimate of the multiscale variance, covariance or correlation along with approximate confidence intervals.
Usage
wave.variance(x, type = "eta3", p = 0.025)
wave.covariance(x, y)
wave.correlation(x, y, N, p = 0.975)
Arguments
x |
first time series |
type |
character string describing confidence interval calculation;
valid methods are |
p |
(one minus the) two-sided p-value for the confidence interval |
y |
second time series |
N |
length of time series |
Details
The time-independent wavelet variance is basically the average of the squared wavelet coefficients across each scale. As shown in Percival (1995), the wavelet variance is a scale-by-scale decomposition of the variance for a stationary process, and certain non-stationary processes.
Value
Matrix with as many rows as levels in the wavelet transform object. The first column provides the point estimate for the wavelet variance, covariance, or correlation followed by the lower and upper bounds from the confidence interval.
Author(s)
B. Whitcher
References
Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering Methods in Finance and Economics, Academic Press.
Percival, D. B. (1995) Biometrika, 82, No. 3, 619-631.
Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge University Press.
Whitcher, B., P. Guttorp and D. B. Percival (2000) Wavelet Analysis of Covariance with Application to Atmospheric Time Series, Journal of Geophysical Research, 105, No. D11, 14,941-14,962.
Examples
## Figure 7.3 from Gencay, Selcuk and Whitcher (2001)
data(ar1)
ar1.modwt <- modwt(ar1, "haar", 6)
ar1.modwt.bw <- brick.wall(ar1.modwt, "haar")
ar1.modwt.var2 <- wave.variance(ar1.modwt.bw, type="gaussian")
ar1.modwt.var <- wave.variance(ar1.modwt.bw, type="nongaussian")
par(mfrow=c(1,1), las=1, mar=c(5,4,4,2)+.1)
matplot(2^(0:5), ar1.modwt.var2[-7,], type="b", log="xy",
xaxt="n", ylim=c(.025, 6), pch="*LU", lty=1, col=c(1,4,4),
xlab="Wavelet Scale", ylab="")
matlines(2^(0:5), as.matrix(ar1.modwt.var)[-7,2:3], type="b",
pch="LU", lty=1, col=3)
axis(side=1, at=2^(0:5))
legend(1, 6, c("Wavelet variance", "Gaussian CI", "Non-Gaussian CI"),
lty=1, col=c(1,4,3), bty="n")
## Figure 7.8 from Gencay, Selcuk and Whitcher (2001)
data(exchange)
returns <- diff(log(as.matrix(exchange)))
returns <- ts(returns, start=1970, freq=12)
wf <- "d4"
J <- 6
demusd.modwt <- modwt(returns[,"DEM.USD"], wf, J)
demusd.modwt.bw <- brick.wall(demusd.modwt, wf)
jpyusd.modwt <- modwt(returns[,"JPY.USD"], wf, J)
jpyusd.modwt.bw <- brick.wall(jpyusd.modwt, wf)
returns.modwt.cov <- wave.covariance(demusd.modwt.bw, jpyusd.modwt.bw)
par(mfrow=c(1,1), las=0, mar=c(5,4,4,2)+.1)
matplot(2^(0:(J-1)), returns.modwt.cov[-(J+1),], type="b", log="x",
pch="*LU", xaxt="n", lty=1, col=c(1,4,4), xlab="Wavelet Scale",
ylab="Wavelet Covariance")
axis(side=1, at=2^(0:7))
abline(h=0)
returns.modwt.cor <- wave.correlation(demusd.modwt.bw, jpyusd.modwt.bw,
N = dim(returns)[1])
par(mfrow=c(1,1), las=0, mar=c(5,4,4,2)+.1)
matplot(2^(0:(J-1)), returns.modwt.cor[-(J+1),], type="b", log="x",
pch="*LU", xaxt="n", lty=1, col=c(1,4,4), xlab="Wavelet Scale",
ylab="Wavelet Correlation")
axis(side=1, at=2^(0:7))
abline(h=0)