| hosking.sim {waveslim} | R Documentation |
Generate Stationary Gaussian Process Using Hosking's Method
Description
Uses exact time-domain method from Hosking (1984) to generate a simulated time series from a specified autocovariance sequence.
Usage
hosking.sim(n, acvs)
Arguments
n |
Length of series. |
acvs |
Autocovariance sequence of series with which to generate, must
be of length at least |
Value
Length n time series from true autocovariance sequence
acvs.
Author(s)
B. Whitcher
References
Hosking, J. R. M. (1984) Modeling persistence in hydrological time series using fractional differencing, Water Resources Research, 20, No. 12, 1898-1908.
Percival, D. B. (1992) Simulating Gaussian random processes with specified spectra, Computing Science and Statistics, 22, 534-538.
Examples
dB <- function(x) 10 * log10(x)
per <- function (z) {
n <- length(z)
(Mod(fft(z))^2/(2 * pi * n))[1:(n%/%2 + 1)]
}
spp.sdf <- function(freq, delta, omega)
abs(2 * (cos(2*pi*freq) - cos(2*pi*omega)))^(-2*delta)
data(acvs.andel8)
n <- 1024
## Not run:
z <- hosking.sim(n, acvs.andel8[,2])
per.z <- 2 * pi * per(z)
par(mfrow=c(2,1), las=1)
plot.ts(z, ylab="", main="Realization of a Seasonal Long-Memory Process")
plot(0:(n/2)/n, dB(per.z), type="l", xlab="Frequency", ylab="dB",
main="Periodogram")
lines(0:(n/2)/n, dB(spp.sdf(0:(n/2)/n, .4, 1/12)), col=2)
## End(Not run)
[Package waveslim version 1.8.5 Index]