dwt {waveslim} | R Documentation |
Discrete Wavelet Transform (DWT)
Description
This function performs a level J
decomposition of the input vector or
time series using the pyramid algorithm (Mallat 1989).
Usage
dwt(x, wf = "la8", n.levels = 4, boundary = "periodic")
dwt.nondyadic(x)
idwt(y)
Arguments
x |
a vector or time series containing the data be to decomposed. This must be a dyadic length vector (power of 2). |
wf |
Name of the wavelet filter to use in the decomposition. By
default this is set to |
n.levels |
Specifies the depth of the decomposition. This must be a number less than or equal to log(length(x),2). |
boundary |
Character string specifying the boundary condition. If
|
y |
An object of S3 class |
Details
The code implements the one-dimensional DWT using the pyramid algorithm (Mallat, 1989). The actual transform is performed in C using pseudocode from Percival and Walden (2001). That means convolutions, not inner products, are used to apply the wavelet filters.
For a non-dyadic length vector or time series, dwt.nondyadic
pads
with zeros, performs the orthonormal DWT on this dyadic length series and
then truncates the wavelet coefficient vectors appropriately.
Value
Basically, a list with the following components
d? |
Wavelet coefficient vectors. |
s? |
Scaling coefficient vector. |
wavelet |
Name of the wavelet filter used. |
boundary |
How the boundaries were handled. |
Author(s)
B. Whitcher
References
Daubechies, I. (1992) Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM: Philadelphia.
Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering Methods in Finance and Economics, Academic Press.
Mallat, S. G. (1989) A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693.
Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge University Press.
See Also
Examples
## Figures 4.17 and 4.18 in Gencay, Selcuk and Whitcher (2001).
data(ibm)
ibm.returns <- diff(log(ibm))
## Haar
ibmr.haar <- dwt(ibm.returns, "haar")
names(ibmr.haar) <- c("w1", "w2", "w3", "w4", "v4")
## plot partial Haar DWT for IBM data
par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(ibm.returns, axes=FALSE, ylab="", main="(a)")
for(i in 1:4)
plot.ts(up.sample(ibmr.haar[[i]], 2^i), type="h", axes=FALSE,
ylab=names(ibmr.haar)[i])
plot.ts(up.sample(ibmr.haar$v4, 2^4), type="h", axes=FALSE,
ylab=names(ibmr.haar)[5])
axis(side=1, at=seq(0,368,by=23),
labels=c(0,"",46,"",92,"",138,"",184,"",230,"",276,"",322,"",368))
## LA(8)
ibmr.la8 <- dwt(ibm.returns, "la8")
names(ibmr.la8) <- c("w1", "w2", "w3", "w4", "v4")
## must shift LA(8) coefficients
ibmr.la8$w1 <- c(ibmr.la8$w1[-c(1:2)], ibmr.la8$w1[1:2])
ibmr.la8$w2 <- c(ibmr.la8$w2[-c(1:2)], ibmr.la8$w2[1:2])
for(i in names(ibmr.la8)[3:4])
ibmr.la8[[i]] <- c(ibmr.la8[[i]][-c(1:3)], ibmr.la8[[i]][1:3])
ibmr.la8$v4 <- c(ibmr.la8$v4[-c(1:2)], ibmr.la8$v4[1:2])
## plot partial LA(8) DWT for IBM data
par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(ibm.returns, axes=FALSE, ylab="", main="(b)")
for(i in 1:4)
plot.ts(up.sample(ibmr.la8[[i]], 2^i), type="h", axes=FALSE,
ylab=names(ibmr.la8)[i])
plot.ts(up.sample(ibmr.la8$v4, 2^4), type="h", axes=FALSE,
ylab=names(ibmr.la8)[5])
axis(side=1, at=seq(0,368,by=23),
labels=c(0,"",46,"",92,"",138,"",184,"",230,"",276,"",322,"",368))