wave.local.multiple.cross.correlation {wavemulcor} | R Documentation |
Wavelet routine for local multiple cross-correlation
Description
Produces an estimate of the multiscale local multiple cross-correlation (as defined below) along with approximate confidence intervals.
Usage
wave.local.multiple.cross.correlation(xx, M,
window="gauss", lag.max=NULL, p=.975, ymaxr=NULL)
Arguments
xx |
A list of |
M |
length of the weight function or rolling window. |
window |
type of weight function or rolling window. Six types are allowed, namely the uniform window, Cleveland or tricube window, Epanechnikov or parabolic window, Bartlett or triangular window, Wendland window and the gaussian window. The letter case and length of the argument are not relevant as long as at least the first four characters are entered. |
lag.max |
maximum lag (and lead). If not set, it defaults to half the square root of the length of the original series. |
p |
one minus the two-sided p-value for the confidence interval, i.e. the cdf value. |
ymaxr |
index number of the variable whose correlation is calculated against a linear combination of the rest, otherwise at each wavelet level wlmc chooses the one maximizing the multiple correlation. |
Details
The routine calculates J+1
sets of wavelet multiple cross-correlations,one per wavelet level, out of n
variables, that can be plotted each as lags and leads time series plots.
Value
List of four elements:
val: |
list of |
lo: |
list of |
up: |
list of |
YmaxR: |
numeric matrix (rows = #observations, columns = #levels) giving, at each wavelet level and time, the index number of the variable whose correlation is calculated against a linear combination of the rest. By default, wlmc chooses at each wavelet level and value in time the variable maximizing the multiple correlation. |
Note
Needs waveslim package to calculate dwt or modwt coefficients as inputs to the routine (also for data in the example).
Author(s)
Javier Fernández-Macho, Dpt. of Quantitative Methods, University of the Basque Country, Agirre Lehendakari etorb. 83, E48015 BILBAO, Spain. (email: javier.fernandezmacho at ehu.eus).
References
Fernández-Macho, J., 2018. Time-localized wavelet multiple regression and correlation, Physica A: Statistical Mechanics, vol. 490, p. 1226–1238. <DOI:10.1016/j.physa.2017.11.050>
Examples
## Based on data from Figure 7.9 in Gencay, Selcuk and Whitcher (2001)
## plus one random series.
library(wavemulcor)
data(exchange)
returns <- diff(log(exchange))
returns <- ts(returns, start=1970, freq=12)
N <- dim(returns)[1]
wf <- "d4"
M <- 30
window <- "gauss"
J <- 3 #trunc(log2(N))-3
lmax <- 2
set.seed(140859)
demusd.modwt <- brick.wall(modwt(returns[,"DEM.USD"], wf, J), wf)
jpyusd.modwt <- brick.wall(modwt(returns[,"JPY.USD"], wf, J), wf)
rand.modwt <- brick.wall(modwt(rnorm(length(returns[,"DEM.USD"])), wf, J), wf)
##xx <- list(demusd.modwt.bw, jpyusd.modwt.bw)
xx <- list(demusd.modwt, jpyusd.modwt, rand.modwt)
names(xx) <- c("DEM.USD","JPY.USD","rand")
## Not run:
# Note: WLMCC may take more than 10 seconds of CPU time on some systems
Lst <- wave.local.multiple.cross.correlation(xx, M, window=window, lag.max=lmax)
val <- Lst$val
low.ci <- Lst$lo
upp.ci <- Lst$up
YmaxR <- Lst$YmaxR
# ---------------------------
##Producing cross-correlation plot
xvar <- seq(1,N,M)
level.lab <- c(paste("Level",1:J),paste("Smooth",J))
ymin <- -0.1
if (length(xx)<3) ymin <- -1
for(j in 1:(J+1)) {
par(mfcol=c(lmax+1,2), las=1, pty="m", mar=c(2,3,1,0)+.1, oma=c(1.2,1.2,1.2,0))
# xaxt <- c(rep("n",lmax),"s",rep("n",lmax))
for(i in c(-lmax:0,lmax:1)+lmax+1) {
matplot(1:N,val[[j]][,i], type="l", lty=1, ylim=c(ymin,1), #xaxt=xaxt[i],
xlab="", ylab="", main=paste("Lag",i-lmax-1))
abline(h=0) ##Add Straight horiz
lines(low.ci[[j]][,i], lty=1, col=2) ##Add Connected Line Segments to a Plot
lines(upp.ci[[j]][,i], lty=1, col=2)
text(xvar,1, labels=names(xx)[YmaxR[[j]]][xvar], adj=0.25, cex=.8)
}
par(las=0)
mtext('time', side=1, outer=TRUE, adj=0.5)
mtext('Local Multiple Cross-Correlation', side=2, outer=TRUE, adj=0.5)
mtext(level.lab[j], side=3, outer=TRUE, adj=0.5)
}
## End(Not run)