| wasp {waspr} | R Documentation |
Compute Wasserstein barycenters of subset posteriors
Description
This function computes Wasserstein Barycenters of subset posteriors and gives posterior summaries for the full posterior.
Usage
wasp(mcmc, par.names = NULL, acc = 0.001, iter = 10, out = FALSE)
Arguments
mcmc |
a three dimensional array (rows = number of subset posteriors, columns = number of parameters of the posterior distribution, slices = samples number of samples for each subset posterior) containing posterior samples for all subsets |
par.names |
optional character vector with parameter names |
acc |
accuracy of the swapping algorithm (default = 0.001) |
iter |
maximum number of iterations of the swapping algorithm (default = 10) |
out |
boolean indicating whether output for each iteration of the swapping algorithm should be displayed (default = false) |
Details
The swapping algorithm developed by Puccetti, Rüschendorf and Vanduffel (2020) is used to compute Wasserstein barycenters of subset posteriors.
Value
A wasp object, which can be further analyzed using the
associated function summary.wasp.
A wasp object contains the following elements (some elements are not
returned if not applicable)
barycenterA matrix of posterior samples (rows) for all parameters (columns) of the full posterior obtained by the swapping algorithm.
rawAn array (
dim = c(subsets, parameters, samples)) containing the raw output from the swapping algorithm.callThe call to the
wasp()function.subsetsThe amount of subset posteriors in mcmc.
parametersThe amount of parameters in mcmc.
samplesThe amount of posterior samples for each subset posterior in mcmc.
accAccuracy of the swapping algorithm, default = 0.001.
iterMaximum amount of iterations for the swapping algorithm, default = 10.
Source
Puccetti, G., Rüschendorf, L. & Vanduffel, S. (2020). On the computation of Wasserstein barycenters, Journal of Multivariate Analysis, 176.
Examples
library(waspr)
out <- wasp(pois_logistic,
par.names = c("beta_s", "alpha_l", "beta_l",
"baseline_sigma", "baseline_mu",
"correlation", "sigma_s", "sigma_l"))
summary(out)