| sex_inclusive {wakefield} | R Documentation |
Generate Random Vector of Non-Binary Genders
Description
Generate a random vector of non-binary genders. Proportion of trans* category was taken from the Williams Institute Report (2011), and subtracted equally from the male and female categories.
Usage
sex_inclusive(
n,
x = c("Male", "Female", "Intersex"),
prob = NULL,
name = "Sex"
)
gender_inclusive(
n,
x = c("Male", "Female", "Trans*"),
prob = NULL,
name = "Gender"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
The genders and probabilities used match approximate gender make-up:
| Gender | Percent |
| Male | 51.07 % |
| Female | 48.63 % |
| Trans* | 0.30 % |
Value
Returns a random factor vector of sex or gender elements.
Author(s)
Matthew Sigal <msigal@yorku.ca>
See Also
Other variable functions:
age(),
animal(),
answer(),
area(),
car(),
children(),
coin(),
color,
date_stamp(),
death(),
dice(),
dna(),
dob(),
dummy(),
education(),
employment(),
eye(),
grade_level(),
grade(),
group(),
hair(),
height(),
income(),
internet_browser(),
iq(),
language,
level(),
likert(),
lorem_ipsum(),
marital(),
military(),
month(),
name,
normal(),
political(),
race(),
religion(),
sat(),
sentence(),
sex(),
smokes(),
speed(),
state(),
string(),
upper(),
valid(),
year(),
zip_code()
Examples
sex_inclusive(10)
barplot(table(sex_inclusive(10000)))
gender_inclusive(10)
barplot(table(gender_inclusive(10000)))