ineq.weighted {wINEQ} | R Documentation |
Weighted inequality measures
Description
Calculates weighted mean and sum of X (or median of X), and a set of relevant inequality measures.
Usage
ineq.weighted(
X,
W = rep(1, length(X)),
AF.norm = TRUE,
Atkinson.e = 1,
Jenkins.alfa = 0.8,
Entropy.e = 0.5,
Kolm.p = 1,
Kolm.scale = "Standardization",
Leti.norm = T,
AN_Y.a = 1,
AN_Y.b = 1,
Apouey.a = 2/(1 - length(W[!is.na(W) & !is.na(X)])),
Apouey.b = length(W[!is.na(W) & !is.na(X)])/(length(W[!is.na(W) & !is.na(X)]) - 1),
BL.withsqrt = FALSE
)
Arguments
X |
is a data vector |
W |
is a vector of weights |
AF.norm |
(logical). If TRUE (default) then index is divided by its maximum possible value |
Atkinson.e |
is a parameter for Atkinson coefficient |
Jenkins.alfa |
is a parameter for Jenkins coefficient |
Entropy.e |
is a generalized entropy index parameter |
Kolm.p |
is a parameter for Kolm index |
Kolm.scale |
method of data standardization before computing |
Leti.norm |
(logical). If TRUE (default) then Leti index is divided by a maximum possible value |
AN_Y.a |
is a positive parameter for Abul Naga and Yalcin inequality measure |
AN_Y.b |
is a parameter for Abul Naga and Yalcin inequality measure |
Apouey.a |
is a parameter for Apouey inequality measure |
Apouey.b |
is a parameter for Apouey inequality measure |
BL.withsqrt |
if TRUE function returns index given by BL2, elsewhere by BL (default). See more in details of BL function. |
Details
Function checks if X is a numeric or an ordered factor. Then it calculates all appropriate inequality measures.
Value
The data frame with weighted mean and sum of X, and all inequality measures relevant for a numeric data. In a case of an ordered factor, the data frame with median of X, and all relevant inequality measures.
Examples
# Compare weighted and unweighted result.
X=1:10
W=1:10
ineq.weighted(X)
ineq.weighted(X,W)
data(Tourism)
# Results for Total expenditure with sample weights:
X=Tourism$`Total expenditure`
W=Tourism$`Sample weight`
ineq.weighted(X)
ineq.weighted(X,W)