PEE {vsmi} | R Documentation |
Penalized estimating equations for generalized linear models with multiple imputation
Description
This is a function to impute missing data, estimate coefficients of generalized linear models and select variables for multiple imputed data sets, considering the correlation of multiple imputed observations.
Usage
PEE(
missdata,
mice_time = 5,
penalty,
lamda.vec = seq(1, 4, length.out = 12),
Gamma = c(0.5, 1, 1.5)
)
Arguments
missdata |
A Matrix,missing data with variables X in the first p columns and response Y at the last column. |
mice_time |
an integer, number of imputation. |
penalty |
The method for variable selection,choose from "lasso" or "alasso". |
lamda.vec |
Optimal tuning parameter for penalty,default seq(1,4,length.out=12). |
Gamma |
Parameter for adjustment of the Adaptive Weights vector in adaptive LASSO,default c(0.5,1,1.5). |
Value
A Vsmi_est object, contians estcoef and index_sig , estcoef for estimate coefficients and index_sig for selected variable index.
Examples
library(MASS)
library(mice)
library(qif)
data_with_missing <- generate_pee_missing_data(outcome="binary")
est.alasso <-PEE(data_with_missing,penalty="alasso")
est.lasso <-PEE(data_with_missing,penalty="lasso")
count_data_with_missing <- generate_pee_missing_data(outcome="count")
count_est.alasso <-PEE(data_with_missing,penalty="alasso")
count_est.lasso <-PEE(data_with_missing,penalty="lasso")
[Package vsmi version 0.1.0 Index]