volnmf_det {vrnmf} | R Documentation |
Update volume-regularized matrix R
using det volume approximation
Description
volnmf_det
finds matrix R
that minimizes objective
||X-C*R||^2 + w.vol*det(R)
Usage
volnmf_det(
C,
X,
R,
posit = FALSE,
w.vol = 0.1,
eigen.cut = 1e-16,
err.cut = 0.001,
n.iter = 1000
)
Arguments
C |
Numeric Matrices. Matrices involved in objective function. Matrix R serves as initialization. |
X |
Numeric Matrices. Matrices involved in objective function. Matrix R serves as initialization. |
R |
Numeric Matrices. Matrices involved in objective function. Matrix R serves as initialization. |
posit |
A boolean. Set up (TRUE) or not (FALSE) non-negative constraints on matrix |
w.vol |
A numeric. Volume (det) weight in objective function. (default=0.1) |
eigen.cut |
A numeric. Threshold on eigenvalue of SVD eigenvectors. (default=1e-16) |
err.cut |
A numeric. Stop algorithm if relative erro in R between iteration is less than |
n.iter |
An integer. Number of iterations. (default=1e+3) |
Value
An updated matrix R
.