| lmCluster {voxel} | R Documentation | 
Run a Linear Model on the mean intensity over a region of interest
Description
This function is able to run a Linear Model using the stats package. All clusters must be labeled with integers in the mask passed as an argument.
Usage
lmCluster(image, mask, fourdOut = NULL, formula, subjData,
  mc.preschedule = TRUE, ncores = 1, ...)
Arguments
| image | Input image of type 'nifti' or vector of path(s) to images. If multiple paths, the script will call mergeNifti() and merge across time. | 
| mask | Input mask of type 'nifti' or path to mask. All clusters must be labeled with integers in the mask passed as an argument | 
| fourdOut | To be passed to mergeNifti. This is the path and file name without the suffix to save the fourd file. Default (NULL) means script won't write out 4D image. | 
| formula | Must be a formula passed to lm() | 
| subjData | Dataframe containing all the covariates used for the analysis | 
| mc.preschedule | Argument to be passed to mclapply, whether or not to preschedule the jobs. More info in parallel::mclapply | 
| ncores | Number of cores to use | 
| ... | Additional arguments passed to lm() | 
Value
Returns list of models fitted to the mean voxel intensity a region or interest.
Examples
image <- oro.nifti::nifti(img = array(1:1600, dim =c(4,4,4,25)))
mask <- oro.nifti::nifti(img = array(1:4, dim = c(4,4,4,1)))
set.seed(1)
covs <- data.frame(x = runif(25))
fm1 <- "~ x"
models <- lmCluster(image=image, mask=mask, 
              formula=fm1, subjData=covs, ncores = 1)