plot.local_importance {vivo} | R Documentation |
Plot Local Variable Importance measure
Description
Function plot.local_importance plots local importance measure based on Ceteris Paribus profiles.
Usage
## S3 method for class 'local_importance'
plot(
x,
...,
variables = NULL,
color = NULL,
type = NULL,
title = "Local variable importance"
)
Arguments
x |
object returned from |
... |
other object returned from |
variables |
if not |
color |
a character. How to aggregated measure? Either "_label_method_" or "_label_model_". |
type |
a character. How variables shall be plotted? Either "bars" (default) or "lines". |
title |
the plot's title, by default |
Value
a ggplot2 object
Examples
library("DALEX")
data(apartments)
library("randomForest")
apartments_rf_model <- randomForest(m2.price ~ construction.year + surface +
floor + no.rooms, data = apartments)
explainer_rf <- explain(apartments_rf_model, data = apartmentsTest[,2:5],
y = apartmentsTest$m2.price)
new_apartment <- data.frame(construction.year = 1998, surface = 88, floor = 2L, no.rooms = 3)
profiles <- predict_profile(explainer_rf, new_apartment)
library("vivo")
measure1 <- local_variable_importance(profiles, apartments[,2:5],
absolute_deviation = TRUE, point = TRUE, density = FALSE)
plot(measure1)
measure2 <- local_variable_importance(profiles, apartments[,2:5],
absolute_deviation = TRUE, point = TRUE, density = TRUE)
plot(measure1, measure2, color = "_label_method_", type = "lines")
[Package vivo version 0.2.1 Index]