calculate_weight {vivo} | R Documentation |
Calculated empirical density and weight based on variable split.
Description
This function calculate an empirical density of raw data based on variable split from Ceteris Paribus profiles. Then calculated weight for values generated by DALEX::predict_profile()
, DALEX::individual_profile()
or ingredients::ceteris_paribus()
.
Usage
calculate_weight(profiles, data, variable_split)
Arguments
profiles |
|
data |
|
variable_split |
list generated by |
Value
Return an weight based on empirical density.
Examples
library("DALEX", warn.conflicts = FALSE, quietly = TRUE)
data(apartments)
split <- vivo::calculate_variable_split(apartments,
variables = colnames(apartments),
grid_points = 101)
library("randomForest", warn.conflicts = FALSE, quietly = TRUE)
apartments_rf_model <- randomForest(m2.price ~ construction.year + surface +
floor + no.rooms, data = apartments)
explainer_rf <- explain(apartments_rf_model, data = apartmentsTest[,2:5],
y = apartmentsTest$m2.price)
new_apartment <- data.frame(construction.year = 1998, surface = 88, floor = 2L, no.rooms = 3)
profiles <- predict_profile(explainer_rf, new_apartment)
library("vivo")
calculate_weight(profiles, data = apartments[, 2:5], variable_split = split)
[Package vivo version 0.2.1 Index]