| create_rank {vivainsights} | R Documentation | 
Rank all groups across HR attributes on a selected Viva Insights metric
Description
This function scans a standard Person query output for groups with high levels of a given Viva Insights Metric. Returns a plot by default, with an option to return a table with all groups (across multiple HR attributes) ranked by the specified metric.
Usage
create_rank(
  data,
  metric,
  hrvar = extract_hr(data, exclude_constants = TRUE),
  mingroup = 5,
  return = "table",
  mode = "simple",
  plot_mode = 1
)
Arguments
| data | A Standard Person Query dataset in the form of a data frame. | 
| metric | Character string containing the name of the metric, e.g. "Collaboration_hours" | 
| hrvar | String containing the name of the HR Variable by which to split
metrics. Defaults to  | 
| mingroup | Numeric value setting the privacy threshold / minimum group size. Defaults to 5. | 
| return | String specifying what to return. This must be one of the following strings: 
 See  | 
| mode | String to specify calculation mode. Must be either: 
 | 
| plot_mode | Numeric vector to determine which plot mode to return. Must
be either  
 | 
Value
A different output is returned depending on the value passed to the return
argument:
-  "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output ifmodeis set to"combine".
-  "table": data frame. A summary table for the metric.
Author(s)
Carlos Morales Torrado carlos.morales@microsoft.com
Martin Chan martin.chan@microsoft.com
See Also
Other Visualization: 
afterhours_dist(),
afterhours_fizz(),
afterhours_line(),
afterhours_rank(),
afterhours_summary(),
afterhours_trend(),
collaboration_area(),
collaboration_dist(),
collaboration_fizz(),
collaboration_line(),
collaboration_rank(),
collaboration_sum(),
collaboration_trend(),
create_bar(),
create_bar_asis(),
create_boxplot(),
create_bubble(),
create_dist(),
create_fizz(),
create_inc(),
create_line(),
create_line_asis(),
create_period_scatter(),
create_sankey(),
create_scatter(),
create_stacked(),
create_tracking(),
create_trend(),
email_dist(),
email_fizz(),
email_line(),
email_rank(),
email_summary(),
email_trend(),
external_dist(),
external_fizz(),
external_line(),
external_rank(),
external_sum(),
hr_trend(),
hrvar_count(),
hrvar_trend(),
keymetrics_scan(),
meeting_dist(),
meeting_fizz(),
meeting_line(),
meeting_rank(),
meeting_summary(),
meeting_trend(),
one2one_dist(),
one2one_fizz(),
one2one_freq(),
one2one_line(),
one2one_rank(),
one2one_sum(),
one2one_trend()
Other Flexible: 
create_bar(),
create_bar_asis(),
create_boxplot(),
create_bubble(),
create_density(),
create_dist(),
create_fizz(),
create_hist(),
create_inc(),
create_line(),
create_line_asis(),
create_period_scatter(),
create_sankey(),
create_scatter(),
create_stacked(),
create_tracking(),
create_trend()
Examples
pq_data_small <- dplyr::slice_sample(pq_data, prop = 0.1)
# Plot mode 1 - show top and bottom five groups
create_rank(
  data = pq_data_small,
  hrvar = c("FunctionType", "LevelDesignation"),
  metric = "Emails_sent",
  return = "plot",
  plot_mode = 1
)
# Plot mode 2 - show top and bottom groups per HR variable
create_rank(
  data = pq_data_small,
  hrvar = c("FunctionType", "LevelDesignation"),
  metric = "Emails_sent",
  return = "plot",
  plot_mode = 2
)
# Return a table
create_rank(
  data = pq_data_small,
  metric = "Emails_sent",
  return = "table"
)
# Return a table - combination mode
create_rank(
  data = pq_data_small,
  metric = "Emails_sent",
  mode = "combine",
  return = "table"
)