create_rank {vivainsights} | R Documentation |
Rank all groups across HR attributes on a selected Viva Insights metric
Description
This function scans a standard Person query output for groups with high levels of a given Viva Insights Metric. Returns a plot by default, with an option to return a table with all groups (across multiple HR attributes) ranked by the specified metric.
Usage
create_rank(
data,
metric,
hrvar = extract_hr(data, exclude_constants = TRUE),
mingroup = 5,
return = "table",
mode = "simple",
plot_mode = 1
)
Arguments
data |
A Standard Person Query dataset in the form of a data frame. |
metric |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
mode |
String to specify calculation mode. Must be either:
|
plot_mode |
Numeric vector to determine which plot mode to return. Must
be either
|
Value
A different output is returned depending on the value passed to the return
argument:
-
"plot"
: 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output ifmode
is set to"combine"
. -
"table"
: data frame. A summary table for the metric.
Author(s)
Carlos Morales Torrado carlos.morales@microsoft.com
Martin Chan martin.chan@microsoft.com
See Also
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
Examples
pq_data_small <- dplyr::slice_sample(pq_data, prop = 0.1)
# Plot mode 1 - show top and bottom five groups
create_rank(
data = pq_data_small,
hrvar = c("FunctionType", "LevelDesignation"),
metric = "Emails_sent",
return = "plot",
plot_mode = 1
)
# Plot mode 2 - show top and bottom groups per HR variable
create_rank(
data = pq_data_small,
hrvar = c("FunctionType", "LevelDesignation"),
metric = "Emails_sent",
return = "plot",
plot_mode = 2
)
# Return a table
create_rank(
data = pq_data_small,
metric = "Emails_sent",
return = "table"
)
# Return a table - combination mode
create_rank(
data = pq_data_small,
metric = "Emails_sent",
mode = "combine",
return = "table"
)