plotResponse {virtualspecies} | R Documentation |
Visualise the response of the virtual species to environmental variables
Description
This function plots the relationships between the virtual species and the environmental variables.
It requires either the output from generateSpFromFun
, generateSpFromPCA
,
generateRandomSp
,
or a manually defined set of environmental variables and response functions.
Usage
plotResponse(
x,
parameters = NULL,
approach = NULL,
rescale = NULL,
axes.to.plot = NULL,
no.plot.reset = FALSE,
rescale.each.response = NULL,
...
)
Arguments
x |
the output from |
parameters |
in case of manually defined response functions, a list containing the associated parameters. See details. |
approach |
in case of manually defined response functions, the chosen
approach: either |
rescale |
|
axes.to.plot |
a vector of 2 values listing the two axes of the PCA to plot. Only useful for a PCA species. |
no.plot.reset |
|
rescale.each.response |
|
... |
Details
If you provide the output from generateSpFromFun
, generateSpFromPCA
or
generateRandomSp
then the function will automatically make the appropriate plots.
Otherwise, you can provide a raster layer/stack of environmental variables to
x
and a list of functions to parameters
to perform the plot.
In that case, you have to specify the approach
: "reponse"
or
"PCA"
:
if
approach = "response"
: Provide toparameters
alist
exactly as defined ingenerateSpFromFun
:
list( var1 = list(fun = 'fun1', args = list(arg1 = ..., arg2 = ..., etc.)), var2 = list(fun = 'fun2', args = list(arg1 = ..., arg2 = ..., etc.)))
if
approach = "PCA"
: Provide toparameters
alist
containing the following elements:pca
: adudi.pca
object computed withdudi.pca
means
: a vector containing two numeric values. Will be used to define the means of the gaussian response functions to the axes of the PCA.sds
a vector containing two numeric values. Will be used to define the standard deviations of the gaussian response functions to the axes of the PCA.
Author(s)
Boris Leroy leroy.boris@gmail.com
with help from C. N. Meynard, C. Bellard & F. Courchamp
Examples
# Create an example stack with four environmental variables
a <- matrix(rep(dnorm(1:100, 50, sd = 25)),
nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),
rast(a * 1:100),
rast(a * logisticFun(1:100, alpha = 10, beta = 70)),
rast(t(a)))
names(env) <- c("var1", "var2", "var3", "var4")
# Per-variable response approach:
parameters <- formatFunctions(var1 = c(fun = 'dnorm', mean = 0.00012,
sd = 0.0001),
var2 = c(fun = 'linearFun', a = 1, b = 0),
var3 = c(fun = 'quadraticFun', a = -20, b = 0.2,
c = 0),
var4 = c(fun = 'logisticFun', alpha = -0.001,
beta = 0.002))
sp1 <- generateSpFromFun(env, parameters, plot = TRUE)
plotResponse(sp1)
# PCA approach:
sp2 <- generateSpFromPCA(env, plot = FALSE)
par(mfrow = c(1, 1))
plotResponse(sp2)