viralx_mars {viralx} | R Documentation |
Explain Multivariate Adaptive Regression Splines Model
Description
Explains the predictions of a Multivariate Adaptive Regression Splines (MARS) model for viral load or CD4 counts using the DALEX and DALEXtra tools.
Usage
viralx_mars(vip_featured, hiv_data, nt, pd, pru, vip_train, vip_new)
Arguments
vip_featured |
A character value |
hiv_data |
A data frame |
nt |
A numeric value |
pd |
A numeric value |
pru |
A character value |
vip_train |
A data frame |
vip_new |
A numeric vector |
Value
A data frame
Examples
library(dplyr)
library(rsample)
library(Formula)
library(plotmo)
library(plotrix)
library(TeachingDemos)
cd_2019 <- c(824, 169, 342, 423, 441, 507, 559,
173, 764, 780, 244, 527, 417, 800,
602, 494, 345, 780, 780, 527, 556,
559, 238, 288, 244, 353, 169, 556,
824, 169, 342, 423, 441, 507, 559)
vl_2019 <- c(40, 11388, 38961, 40, 75, 4095, 103,
11388, 46, 103, 11388, 40, 0, 11388,
0, 4095, 40, 93, 49, 49, 49,
4095, 6837, 38961, 38961, 0, 0, 93,
40, 11388, 38961, 40, 75, 4095, 103)
cd_2021 <- c(992, 275, 331, 454, 479, 553, 496,
230, 605, 432, 170, 670, 238, 238,
634, 422, 429, 513, 327, 465, 479,
661, 382, 364, 109, 398, 209, 1960,
992, 275, 331, 454, 479, 553, 496)
vl_2021 <- c(80, 1690, 5113, 71, 289, 3063, 0,
262, 0, 15089, 13016, 1513, 60, 60,
49248, 159308, 56, 0, 516675, 49, 237,
84, 292, 414, 26176, 62, 126, 93,
80, 1690, 5113, 71, 289, 3063, 0)
cd_2022 <- c(700, 127, 127, 547, 547, 547, 777,
149, 628, 614, 253, 918, 326, 326,
574, 361, 253, 726, 659, 596, 427,
447, 326, 253, 248, 326, 260, 918,
700, 127, 127, 547, 547, 547, 777)
vl_2022 <- c(0, 0, 53250, 0, 40, 1901, 0,
955, 0, 0, 0, 0, 40, 0,
49248, 159308, 56, 0, 516675, 49, 237,
0, 23601, 0, 40, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0)
x <- cbind(cd_2019, vl_2019, cd_2021, vl_2021, cd_2022, vl_2022) |>
as.data.frame()
set.seed(123)
hi_data <- rsample::initial_split(x)
set.seed(123)
hiv_data <- hi_data |>
rsample::training()
nt <- 3
pd <- 1
pru <- "none"
vip_featured <- c("cd_2022")
vip_features <- c("cd_2019", "vl_2019", "cd_2021", "vl_2021", "vl_2022")
set.seed(123)
vi_train <- rsample::initial_split(x)
set.seed(123)
vip_train <- vi_train |>
rsample::training() |>
dplyr::select(rsample::all_of(vip_features))
vip_new <- vip_train[1,]
viralx_mars(vip_featured, hiv_data, nt, pd, pru, vip_train, vip_new)
[Package viralx version 1.3.0 Index]