histoplot {vioplot}R Documentation

histoplot

Description

Produce histogram plot(s) of the given (grouped) values with enhanced annotation and colour per group. Includes customisation of colours for each aspect of the histogram, boxplot, and separate histograms. This supports input of data as a list or formula, being backwards compatible with histoplot (0.2) and taking input in a formula as used for boxplot.

Interpreting the columns (or rows) of a matrix as different groups, draw a boxplot for each.

Usage

## S3 method for class 'matrix'
histoplot(x, use.cols = TRUE, ...)

## S3 method for class 'list'
histoplot(x, ...)

## S3 method for class 'data.frame'
histoplot(x, ...)

## S3 method for class 'matrix'
histoplot(x, use.cols = TRUE, ...)

## S3 method for class 'formula'
histoplot(
  formula,
  data = NULL,
  ...,
  subset,
  na.action = NULL,
  add = FALSE,
  ann = !add,
  horizontal = FALSE,
  side = "both",
  xlab = mklab(y_var = horizontal),
  ylab = mklab(y_var = !horizontal),
  names = NULL,
  drop = FALSE,
  sep = ".",
  lex.order = FALSE
)

## Default S3 method:
histoplot(
  x,
  ...,
  data = NULL,
  breaks = "Sturges",
  xlim = NULL,
  ylim = NULL,
  names = NULL,
  horizontal = FALSE,
  col = "grey50",
  border = par()$fg,
  lty = 1,
  lwd = 1,
  rectCol = par()$fg,
  lineCol = par()$fg,
  pchMed = 19,
  colMed = "white",
  colMed2 = "grey 75",
  at,
  add = FALSE,
  wex = 1,
  drawRect = TRUE,
  areaEqual = FALSE,
  axes = TRUE,
  frame.plot = axes,
  panel.first = NULL,
  panel.last = NULL,
  asp = NA,
  main = "",
  sub = "",
  xlab = NA,
  ylab = NA,
  line = NA,
  outer = FALSE,
  xlog = NA,
  ylog = NA,
  adj = NA,
  ann = NA,
  ask = NA,
  bg = NA,
  bty = NA,
  cex = NA,
  cex.axis = NA,
  cex.lab = NA,
  cex.main = NA,
  cex.names = NULL,
  cex.sub = NA,
  cin = NA,
  col.axis = NA,
  col.lab = NA,
  col.main = NA,
  col.sub = NA,
  cra = NA,
  crt = NA,
  csi = NA,
  cxy = NA,
  din = NA,
  err = NA,
  family = NA,
  fg = NA,
  fig = NA,
  fin = NA,
  font = NA,
  font.axis = NA,
  font.lab = NA,
  font.main = NA,
  font.sub = NA,
  lab = NA,
  las = NA,
  lend = NA,
  lheight = NA,
  ljoin = NA,
  lmitre = NA,
  mai = NA,
  mar = NA,
  mex = NA,
  mfcol = NA,
  mfg = NA,
  mfrow = NA,
  mgp = NA,
  mkh = NA,
  new = NA,
  oma = NA,
  omd = NA,
  omi = NA,
  page = NA,
  pch = NA,
  pin = NA,
  plt = NA,
  ps = NA,
  pty = NA,
  smo = NA,
  srt = NA,
  tck = NA,
  tcl = NA,
  usr = NA,
  xaxp = NA,
  xaxs = NA,
  xaxt = NA,
  xpd = NA,
  yaxp = NA,
  yaxs = NA,
  yaxt = NA,
  ylbias = NA,
  log = "",
  logLab = c(1, 2, 5),
  na.action = NULL,
  na.rm = T,
  side = "both"
)

Arguments

x

a numeric matrix.

...

Further arguments to histoplot.

use.cols

logical indicating if columns (by default) or rows (use.cols = FALSE) should be plotted.

formula

a formula, such as y ~ grp, where y is a numeric vector of data values to be split into groups according to the grouping variable grp (usually a factor).

data

a data.frame (or list) from which the variables in formula should be taken.

subset

an optional vector specifying a subset of observations to be used for plotting.

na.action

a function which indicates what should happen when the data contain NAs. The default is to ignore missing values in either the response or the group.

add

logical. if FALSE (default) a new plot is created

horizontal

logical. To use horizontal or vertical histograms. Note that log scale can only be used on the x-axis for horizontal histograms, and on the y-axis otherwise.

side

defaults to "both". Assigning "left" or "right" enables one sided plotting of histograms. May be applied as a scalar across all groups.

names

one label, or a vector of labels for the data must match the number of data given

drop, sep, lex.order

defines groups to plot from formula, passed to split.default, see there.

breaks

the breaks for the density estimator, as explained in hist

xlim, ylim

numeric vectors of length 2, giving the x and y coordinates ranges.

col

Graphical parameter for fill colour of the histogram(s) polygon. NA for no fill colour. If col is a vector, it specifies the colour per histogram, and colours are reused if necessary.

border

Graphical parameters for the colour of the histogram border passed to lines. NA for no border. If border is a vector, it specifies the colour per histogram, and colours are reused if necessary.

lty, lwd

Graphical parameters for the histogram passed to lines and polygon

rectCol

Graphical parameters to control fill colour of the box. NA for no fill colour. If col is a vector, it specifies the colour per histogram, and colours are reused if necessary.

lineCol

Graphical parameters to control colour of the box outline and whiskers. NA for no border. If lineCol is a vector, it specifies the colour per histogram, and colours are reused if necessary.

pchMed

Graphical parameters to control shape of the median point. If pchMed is a vector, it specifies the shape per histogram.

colMed, colMed2

Graphical parameters to control colour of the median point. If colMed is a vector, it specifies the colour per histogram. colMed specifies the fill colour in all cases unless pchMed is 21:25 in which case colMed is the border colour and colMed2 is the fill colour.

at

position of each histogram. Default to 1:n

wex

relative expansion of the histogram. If wex is a vector, it specifies the area/width size per histogram and sizes are reused if necessary.

drawRect

logical. The box is drawn if TRUE.

areaEqual

logical. Density plots checked for equal area if TRUE. wex must be scalar, relative widths of histograms depend on area.

axes, frame.plot, panel.first, panel.last, asp, line, outer, adj, ann, ask, bg, bty, cin, col.axis, col.lab, col.main, col.sub, cra, crt, csi, cxy, din, err, family, fg, fig, fin, font, font.axis, font.lab, font.main, font.sub, lab, las, lend, lheight, ljoin, lmitre, mai, mar, mex, mfcol, mfg, mfrow, mgp, mkh, new, oma, omd, omi, page, pch, pin, plt, ps, pty, smo, srt, tck, tcl, usr, xaxp, xaxs, xaxt, xpd, yaxp, yaxs, ylbias

Arguments to be passed to methods, such as graphical parameters (see par)).

main, sub, xlab, ylab

graphical parameters passed to plot.

ylog, xlog

A logical value (see log in plot.default). If ylog is TRUE, a logarithmic scale is in use (e.g., after plot(*, log = "y")). For horizontal = TRUE then, if xlog is TRUE, a logarithmic scale is in use (e.g., after plot(*, log = "x")). For a new device, it defaults to FALSE, i.e., linear scale.

cex

A numerical value giving the amount by which plotting text should be magnified relative to the default.

cex.axis

The magnification to be used for y axis annotation relative to the current setting of cex.

cex.lab

The magnification to be used for x and y labels relative to the current setting of cex.

cex.main

The magnification to be used for main titles relative to the current setting of cex.

cex.names

The magnification to be used for x axis annotation relative to the current setting of cex. Takes the value of cex.axis if not given.

cex.sub

The magnification to be used for sub-titles relative to the current setting of cex.

yaxt

A character which specifies the y axis type. Specifying "n" suppresses plotting.

log

Logarithmic scale if log = "y" or TRUE. Invokes ylog = TRUE. If horizontal is TRUE then invokes xlog = TRUE.

logLab

Increments for labelling y-axis on log-scale, defaults to numbers starting with 1, 2, 5, and 10.

na.rm

logical value indicating whether NA values should be stripped before the computation proceeds. Defaults to TRUE.

Examples


# box- vs histogram-plot
par(mfrow=c(2,1))
mu<-2
si<-0.6
bimodal<-c(rnorm(1000,-mu,si),rnorm(1000,mu,si))
uniform<-runif(2000,-4,4)
normal<-rnorm(2000,0,3)
histoplot(bimodal,uniform,normal)
boxplot(bimodal,uniform,normal)

# add to an existing plot
x <- rnorm(100)
y <- rnorm(100)
plot(x, y, xlim=c(-5,5), ylim=c(-5,5))
histoplot(x, col="tomato", horizontal=TRUE, at=-4, add=TRUE,lty=2, rectCol="gray")
histoplot(y, col="cyan", horizontal=FALSE, at=-4, add=TRUE,lty=2)

# formula input
data("iris")
histoplot(Sepal.Length~Species, data = iris, main = "Sepal Length",
        col=c("lightgreen", "lightblue", "palevioletred"))
legend("topleft", legend=c("setosa", "versicolor", "virginica"),
       fill=c("lightgreen", "lightblue", "palevioletred"), cex = 0.5)

data("diamonds", package = "ggplot2")
palette <- RColorBrewer::brewer.pal(9, "Pastel1")
par(mfrow=c(3, 1))
histoplot(price ~ cut, data = diamonds, las = 1, col = palette)
histoplot(price ~ clarity, data = diamonds, las = 2, col = palette)
histoplot(price ~ color, data = diamonds, las = 2, col = palette)
par(mfrow=c(3, 1))

#generate example data
data_one <- rnorm(100)
data_two <- rnorm(50, 1, 2)

#generate histogram plot with similar functionality to histoplot
histoplot(data_one, data_two, col="magenta")

#note vioplox defaults to a greyscale plot
histoplot(data_one, data_two)

#colours can be customised separately, with axis labels, legends, and titles
histoplot(data_one, data_two, col=c("red","blue"), names=c("data one", "data two"),
   main="data histogram", xlab="data class", ylab="data read")
legend("topleft", fill=c("red","blue"), legend=c("data one", "data two"))

#colours can be customised for the histogram fill and border separately
histoplot(data_one, data_two, col="grey85", border="purple", names=c("data one", "data two"),
   main="data histogram", xlab="data class", ylab="data read")

#colours can also be customised for the boxplot rectange and lines (border and whiskers)
histoplot(data_one, data_two, col="grey85", rectCol="lightblue", lineCol="blue",
   border="purple", names=c("data one", "data two"),
   main="data histogram", xlab="data class", ylab="data read")

#these colours can also be customised separately for each histogram
histoplot(data_one, data_two, col=c("skyblue", "plum"), rectCol=c("lightblue", "palevioletred"),
   lineCol="blue", border=c("royalblue", "purple"), names=c("data one", "data two"),
   main="data histogram", xlab="data class", ylab="data read")

#this applies to any number of histograms, given that colours are provided for each
histoplot(data_one, data_two, rnorm(200, 3, 0.5), rpois(200, 2.5),  rbinom(100, 10, 0.4),
   col=c("red", "orange", "green", "blue", "violet"),
   rectCol=c("palevioletred", "peachpuff", "lightgreen", "lightblue", "plum"),
   lineCol=c("red4", "orangered", "forestgreen", "royalblue", "mediumorchid"),
   border=c("red4", "orangered", "forestgreen", "royalblue", "mediumorchid"),
   names=c("data one", "data two", "data three", "data four", "data five"),
   main="data histogram", xlab="data class", ylab="data read")

#The areaEqual parameter scales with width of histograms
#histograms will have equal density area (including missing tails) rather than equal maximum width
histoplot(data_one, data_two, areaEqual=TRUE)

histoplot(data_one, data_two, areaEqual=TRUE,
   col=c("skyblue", "plum"), rectCol=c("lightblue", "palevioletred"),
   lineCol="blue", border=c("royalblue", "purple"), names=c("data one", "data two"),
   main="data histogram", xlab="data class", ylab="data read")

histoplot(data_one, data_two, rnorm(200, 3, 0.5), rpois(200, 2.5),  rbinom(100, 10, 0.4),
   areaEqual=TRUE, col=c("red", "orange", "green", "blue", "violet"),
   rectCol=c("palevioletred", "peachpuff", "lightgreen", "lightblue", "plum"),
   lineCol=c("red4", "orangered", "forestgreen", "royalblue", "mediumorchid"),
   border=c("red4", "orangered", "forestgreen", "royalblue", "mediumorchid"),
   names=c("data one", "data two", "data three", "data four", "data five"),
   main="data histogram", xlab="data class", ylab="data read")

#To compare multiple groups of histogram densities, it helps to adjust the wex.

dlist1 <- lapply(c(10,20,30,40), function(n) runif(n))
dlist2 <- lapply(c(100,200,300,400), function(n) runif(n))

hscale1 <- sapply(dlist1, function(r){
  max(hist(r, plot=FALSE, breaks=seq(0,1,by=.05))$density)})
histoplot(dlist1, side='left', col=grey(.3),
          breaks=seq(0,1,by=.05), add=FALSE, pchMed=NA, drawRect=FALSE, border=NA,
          wex=hscale1/length(hscale1))

hscale2 <- sapply(dlist2, function(r){
  max(hist(r, plot=FALSE, breaks=seq(0,1,by=.05))$density)})
histoplot(dlist2, side='right', col=grey(.7),
          breaks=seq(0,1,by=.05), add=TRUE, pchMed=NA, drawRect=FALSE, border=NA,
          wex=hscale2/length(hscale2))

#Sometimes, it is helpful to see the raw counts instead.

dvec <- length(unlist(c(dlist1, dlist2)))/4

histoplot(dlist1, side='left', col=grey(.3),
          breaks=seq(0,1,by=.05), add=FALSE, pchMed=NA, drawRect=FALSE, border=NA,
          wex=sapply(dlist1, length)/dvec*hscale1/length(hscale1))
histoplot(dlist2, side='right', col=grey(.7),
          breaks=seq(0,1,by=.05), add=TRUE, pchMed=NA, drawRect=FALSE, border=NA,
          wex=sapply(dlist2, length)/dvec*hscale2/length(hscale2))

#It may also benefit some users to pass density and angle arguments to the
# histograms (ultimately rect) and create outer legends

hist(runif(100), density=c(10,20), angle=c(22,90+22) ,col=1)

outer_legend <- function(...) {
  opar <- par(fig=c(0, 1, 0, 1), oma=c(0, 0, 0, 0), mar=c(0, 0, 0, 0), new=TRUE)
  on.exit(par(opar))
  plot(0, 0, type='n', bty='n', xaxt='n', yaxt='n')
  legend(...)
}
outer_legend('topright', pch=15, density=c(10,20), angle=c(22,90+22), col=0, legend=c('Y','N'))


[Package vioplot version 0.5.0 Index]