h-methods {vines} | R Documentation |
Methods for the h-functions
Description
The function represents the conditional distribution function of a
bivariate copula and it should be defined for every copula used in
a pair-copula construction. It is defined as the partial derivative of the
distribution function of the copula w.r.t. the second argument
.
Usage
h(copula, x, v, eps)
Arguments
copula |
A bivariate |
x |
Numeric vector with values in |
v |
Numeric vector with values in |
eps |
To avoid numerical problems for extreme values, the values of
|
Methods
signature(copula = "copula")
-
Default definition of the
function for a bivariate copula. This method is used if no particular definition is given for a copula. The partial derivative is calculated numerically using the
numericDeriv
function. signature(copula = "indepCopula")
-
The
function of the independence copula.
signature(copula = "normalCopula")
-
The
function of the normal copula.
signature(copula = "tCopula")
-
The
function of the t copula.
signature(copula = "claytonCopula")
-
The
function of the Clayton copula.
signature(copula = "gumbelCopula")
-
The
function of the Gumbel copula.
signature(copula = "fgmCopula")
-
The
function of the Farlie-Gumbel-Morgenstern copula.
signature(copula = "frankCopula")
-
The
function of the Frank copula.
signature(copula = "galambosCopula")
-
The
function of the Galambos copula.
References
Aas, K. and Czado, C. and Frigessi, A. and Bakken, H. (2009) Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44, 182–198.
Schirmacher, D. and Schirmacher, E. (2008) Multivariate dependence modeling using pair-copulas. Enterprise Risk Management Symposium, Chicago.