average_vim | Average multiple independent importance estimates |
bootstrap_se | Compute bootstrap-based standard error estimates for variable importance |
check_fitted_values | Check pre-computed fitted values for call to vim, cv_vim, or sp_vim |
check_inputs | Check inputs to a call to vim, cv_vim, or sp_vim |
create_z | Create complete-case outcome, weights, and Z |
cv_vim | Nonparametric Intrinsic Variable Importance Estimates and Inference using Cross-fitting |
estimate | Estimate a Predictiveness Measure |
estimate.predictiveness_measure | Obtain a Point Estimate and Efficient Influence Function Estimate for a Given Predictiveness Measure |
estimate_eif_projection | Estimate projection of EIF on fully-observed variables |
estimate_nuisances | Estimate nuisance functions for average value-based VIMs |
estimate_type_predictiveness | Estimate Predictiveness Given a Type |
est_predictiveness | Estimate a nonparametric predictiveness functional |
est_predictiveness_cv | Estimate a nonparametric predictiveness functional using cross-fitting |
extract_sampled_split_predictions | Extract sampled-split predictions from a CV.SuperLearner object |
format.predictiveness_measure | Format a 'predictiveness_measure' object |
format.vim | Format a 'vim' object |
get_cv_sl_folds | Get a numeric vector with cross-validation fold IDs from CV.SuperLearner |
get_full_type | Obtain the type of VIM to estimate using partial matching |
get_test_set | Return test-set only data |
make_folds | Create Folds for Cross-Fitting |
make_kfold | Turn folds from 2K-fold cross-fitting into individual K-fold folds |
measure_accuracy | Estimate the classification accuracy |
measure_anova | Estimate ANOVA decomposition-based variable importance. |
measure_auc | Estimate area under the receiver operating characteristic curve (AUC) |
measure_average_value | Estimate the average value under the optimal treatment rule |
measure_cross_entropy | Estimate the cross-entropy |
measure_deviance | Estimate the deviance |
measure_mse | Estimate mean squared error |
measure_r_squared | Estimate R-squared |
merge_vim | Merge multiple 'vim' objects into one |
predictiveness_measure | Construct a Predictiveness Measure |
print.predictiveness_measure | Print 'predictiveness_measure' objects |
print.vim | Print 'vim' objects |
process_arg_lst | Process argument list for Super Learner estimation of the EIF |
run_sl | Run a Super Learner for the provided subset of features |
sample_subsets | Create necessary objects for SPVIMs |
scale_est | Return an estimator on a different scale |
spvim_ics | Influence function estimates for SPVIMs |
spvim_se | Standard error estimate for SPVIM values |
sp_vim | Shapley Population Variable Importance Measure (SPVIM) Estimates and Inference |
vim | Nonparametric Intrinsic Variable Importance Estimates and Inference |
vimp_accuracy | Nonparametric Intrinsic Variable Importance Estimates: Classification accuracy |
vimp_anova | Nonparametric Intrinsic Variable Importance Estimates: ANOVA |
vimp_auc | Nonparametric Intrinsic Variable Importance Estimates: AUC |
vimp_ci | Confidence intervals for variable importance |
vimp_deviance | Nonparametric Intrinsic Variable Importance Estimates: Deviance |
vimp_hypothesis_test | Perform a hypothesis test against the null hypothesis of delta importance |
vimp_regression | Nonparametric Intrinsic Variable Importance Estimates: ANOVA |
vimp_rsquared | Nonparametric Intrinsic Variable Importance Estimates: R-squared |
vimp_se | Estimate variable importance standard errors |
vrc01 | Neutralization sensitivity of HIV viruses to antibody VRC01 |