prosim {vfcp} | R Documentation |
Monte Carlo method
Description
Probability of the inside of an object as defined by CDF and survival. For this, the Monte Carlo method is used.
Usage
prosim(C, fam, tht, dm, no)
Arguments
C |
single numeric; CDF value. Survival value is |
fam |
Family name copula. These can be: "clayton", "gumbel", "frank", "joe", "amh", "fgm". |
tht |
Copula parameter. If |
dm |
Copula dimension |
no |
Monte Carlo sample size |
Value
Probability
Author(s)
Josef Brejcha
Examples
tht = 10.6
cx = c(0.05, 0.1, 0.15, 0.25)
pro = c(0.99999, 0.9999, 0.999, 0.99, 24, 16, 8, 4)
dm = 4
fam = "gumbel"
marg = rep(c("weibull", "betapr"), 2)
xo = rep(c(200, 2.75, 16.5, 6.60), 2)
#===========================
kop2 = kopula(fam, tht, dm)
fmc = c("", "", "clayton", "gumbel", "frank", "joe")
pro = c(0.999999, 0.99999, 0.9999, 16, 8, 4, 2)
tm3 = list()
tmk = list()
# di = dm*(dm - 1)/2
for (k in 1:length(cx)){
tm3 = gentruk(tht, fm=fam, C=cx[k], pro)
tmk[[k]] = tm3
}
np = 5
no = 100000
ncx = length(cx)
p = array(0, c(np*ncx, 2))
colnames(p) = c("C", "p")
k = 0
for (i in 1:length(cx)){
for (j in 1:np){
k = k + 1
p[k, 1] = cx[i]
p[k, 2] = prosim(C = cx[i], fam, tht, dm, no)
}
}
plst = list()
print(paste(fam, "dim =", dm, "tht =", tht, "n =", no, "nrep.", np))
for (k in 1:ncx){
plst[[k]] = summary(p[p[, 1] == cx[k], 2])
print(paste("cx =", cx[k]))
print(plst[[k]])
}
[Package vfcp version 1.4.0 Index]