| vetiver_ptype.train {vetiver} | R Documentation |
Create a vetiver input data prototype
Description
Optionally find and return an input data prototype for a model.
Usage
## S3 method for class 'train'
vetiver_ptype(model, ...)
## S3 method for class 'gam'
vetiver_ptype(model, ...)
## S3 method for class 'glm'
vetiver_ptype(model, ...)
## S3 method for class 'keras.engine.training.Model'
vetiver_ptype(model, ...)
## S3 method for class 'kproto'
vetiver_ptype(model, ...)
## S3 method for class 'lm'
vetiver_ptype(model, ...)
## S3 method for class 'luz_module_fitted'
vetiver_ptype(model, ...)
## S3 method for class 'Learner'
vetiver_ptype(model, ...)
vetiver_ptype(model, ...)
## Default S3 method:
vetiver_ptype(model, ...)
vetiver_create_ptype(model, save_prototype, ...)
## S3 method for class 'ranger'
vetiver_ptype(model, ...)
## S3 method for class 'recipe'
vetiver_ptype(model, ...)
## S3 method for class 'model_stack'
vetiver_ptype(model, ...)
## S3 method for class 'workflow'
vetiver_ptype(model, ...)
## S3 method for class 'xgb.Booster'
vetiver_ptype(model, ...)
Arguments
model |
A trained model, such as an |
... |
Other method-specific arguments passed to |
save_prototype |
Should an input data prototype be stored with the model?
The options are |
Details
These are developer-facing functions, useful for supporting new model types.
A vetiver_model() object optionally stores an input data prototype for
checking at prediction time.
The default for
save_prototype,TRUE, finds an input data prototype (a zero-row slice of the training data) viavetiver_ptype().-
save_prototype = FALSEopts out of storing any input data prototype. You may pass your own data to
save_prototype, but be sure to check that it has the same structure as your training data, perhaps withhardhat::scream().
Value
A vetiver_ptype method returns a zero-row dataframe, and
vetiver_create_ptype() returns either such a zero-row dataframe, NULL,
or the dataframe passed to save_prototype.
Examples
cars_lm <- lm(mpg ~ cyl + disp, data = mtcars)
vetiver_create_ptype(cars_lm, TRUE)
## calls the right method for `model` via:
vetiver_ptype(cars_lm)
## can also turn off prototype
vetiver_create_ptype(cars_lm, FALSE)
## some models require that you pass in training features
cars_rf <- ranger::ranger(mpg ~ ., data = mtcars)
vetiver_ptype(cars_rf, prototype_data = mtcars[,-1])