| vetiver_api {vetiver} | R Documentation |
Create a Plumber API to predict with a deployable vetiver_model() object
Description
Use vetiver_api() to add a POST endpoint for predictions from a
trained vetiver_model() to a Plumber router.
Usage
vetiver_api(
pr,
vetiver_model,
path = "/predict",
debug = is_interactive(),
...
)
vetiver_pr_post(
pr,
vetiver_model,
path = "/predict",
debug = is_interactive(),
...,
check_prototype = TRUE,
check_ptype = deprecated()
)
vetiver_pr_docs(pr, vetiver_model, path = "/predict", all_docs = TRUE)
Arguments
pr |
A Plumber router, such as from |
vetiver_model |
A deployable |
path |
The endpoint path |
debug |
|
... |
Other arguments passed to |
check_prototype |
Should the input data prototype stored in
|
check_ptype |
|
all_docs |
Should the interactive visual API documentation be created
for all POST endpoints in the router |
Details
You can first store and version your vetiver_model() with
vetiver_pin_write(), and then create an API endpoint with vetiver_api().
Setting debug = TRUE may expose any sensitive data from your model in
API errors.
Several GET endpoints will also be added to the router pr, depending on the
characteristics of the model object:
a
/pin-urlendpoint to return the URL of the pinned modela
/metadataendpoint to return any metadata stored with the modela
/pingendpoint for the API healtha
/prototypeendpoint for the model's input data prototype (usecereal::cereal_from_json()) to convert this back to a vctrs ptype
The function vetiver_api() uses:
-
vetiver_pr_post()for endpoint definition and -
vetiver_pr_docs()to create visual API documentation
These modular functions are available for more advanced use cases.
Value
A Plumber router with the prediction endpoint added.
Examples
cars_lm <- lm(mpg ~ ., data = mtcars)
v <- vetiver_model(cars_lm, "cars_linear")
library(plumber)
pr() %>% vetiver_api(v)
## is the same as:
pr() %>% vetiver_pr_post(v) %>% vetiver_pr_docs(v)
## for either, next, pipe to `pr_run()`