| handler_startup.train {vetiver} | R Documentation |
Model handler functions for API endpoint
Description
These are developer-facing functions, useful for supporting new model types.
Each model supported by vetiver_model() uses two handler functions
in vetiver_api():
The
handler_startupfunction executes when the API starts. Use this function for tasks like loading packages. A model can use the default method here, which isNULL(to do nothing at startup).The
handler_predictfunction executes at each API call. Use this function for callingpredict()and any other tasks that must be executed at each API call.
Usage
## S3 method for class 'train'
handler_startup(vetiver_model)
## S3 method for class 'train'
handler_predict(vetiver_model, ...)
## S3 method for class 'gam'
handler_startup(vetiver_model)
## S3 method for class 'gam'
handler_predict(vetiver_model, ...)
## S3 method for class 'glm'
handler_predict(vetiver_model, ...)
handler_startup(vetiver_model)
## Default S3 method:
handler_startup(vetiver_model)
handler_predict(vetiver_model, ...)
## Default S3 method:
handler_predict(vetiver_model, ...)
## S3 method for class 'keras.engine.training.Model'
handler_startup(vetiver_model)
## S3 method for class 'keras.engine.training.Model'
handler_predict(vetiver_model, ...)
## S3 method for class 'kproto'
handler_predict(vetiver_model, ...)
## S3 method for class 'lm'
handler_predict(vetiver_model, ...)
## S3 method for class 'luz_module_fitted'
handler_startup(vetiver_model)
## S3 method for class 'luz_module_fitted'
handler_predict(vetiver_model, ...)
## S3 method for class 'Learner'
handler_startup(vetiver_model)
## S3 method for class 'Learner'
handler_predict(vetiver_model, ...)
## S3 method for class 'ranger'
handler_startup(vetiver_model)
## S3 method for class 'ranger'
handler_predict(vetiver_model, ...)
## S3 method for class 'recipe'
handler_startup(vetiver_model)
## S3 method for class 'recipe'
handler_predict(vetiver_model, ...)
## S3 method for class 'model_stack'
handler_startup(vetiver_model)
## S3 method for class 'model_stack'
handler_predict(vetiver_model, ...)
## S3 method for class 'workflow'
handler_startup(vetiver_model)
## S3 method for class 'workflow'
handler_predict(vetiver_model, ...)
## S3 method for class 'xgb.Booster'
handler_startup(vetiver_model)
## S3 method for class 'xgb.Booster'
handler_predict(vetiver_model, ...)
Arguments
vetiver_model |
A deployable |
... |
Other arguments passed to |
Details
These are two generics that use the class of vetiver_model$model
for dispatch.
Value
A handler_startup function should return invisibly, while a
handler_predict function should return a function with the signature
function(req). The request body (req$body) consists of the new data
at prediction time; this function should return predictions either as a
tibble or as a list coercable to a tibble via tibble::as_tibble().
Examples
cars_lm <- lm(mpg ~ ., data = mtcars)
v <- vetiver_model(cars_lm, "cars_linear")
handler_startup(v)
handler_predict(v)