| hier.vegclust {vegclust} | R Documentation |
Clustering with several number of clusters
Description
Performs several runs of function 'vegclust' (or 'vegclustdist') on a community data matrix (or distance matrix) using different number of clusters
Usage
hier.vegclust(x, hclust, cmin=2,cmax=20, min.size=NULL, verbose=TRUE, ...)
hier.vegclustdist(x, hclust, cmin=2,cmax=20, min.size=NULL, verbose=TRUE, ...)
random.vegclust(x, cmin=2, cmax=20, nstart=10, min.size=NULL, verbose=TRUE, ...)
random.vegclustdist(x, cmin=2, cmax=20, nstart=10, min.size=NULL, verbose=TRUE, ...)
Arguments
x |
For |
hclust |
A hierarchical clustering represented in an object of type |
cmin |
Number of minimum mobile clusters. |
cmax |
Number of maximum mobile clusters. |
nstart |
A number indicating how many random trials should be performed for each number of groups |
min.size |
If |
verbose |
Flag used to print which number of clusters is currently running. |
... |
Additional parameters for function |
Details
Function hier.vegclust takes starting cluster configurations from cuts of a dendrogram given by object hclust. Function random.vegclust chooses random objects as cluster centroids and for each number of clusters performs nstart trials. Functions hier.vegclustdist and random.vegclustdist are analogous to hier.vegclust and random.vegclust but accept distance matrices as input.
Value
Returns an object of type 'mvegclust' (multiple vegclust), which contains a list vector with objects of type vegclust.
Author(s)
Miquel De Cáceres, CREAF
See Also
vegclust, vegclustdist, vegclass, defuzzify, hclust
Examples
## Loads data
data(wetland)
## This equals the chord transformation
## (see also \code{\link{decostand}} in package vegan)
wetland.chord = as.data.frame(sweep(as.matrix(wetland), 1,
sqrt(rowSums(as.matrix(wetland)^2)), "/"))
## Create noise clustering from hierarchical clustering at different number of clusters
wetland.hc = hclust(dist(wetland.chord),method="ward")
wetland.nc1 = hier.vegclust(wetland.chord, wetland.hc, cmin=2, cmax=5,
m = 1.2, dnoise=0.75, method="NC")
## Create noise clustering from random seeds at different levels
wetland.nc2 = random.vegclust(wetland.chord, cmin=2, cmax=5, nstart=10,
m = 1.2, dnoise=0.75, method="NC")